Найдем сумму и произведение корней квадратного уравнения. Используя формулы (59.8) для корней приведенного уравнения, получим
(первое равенство очевидно, второе получается после несложного вычисления, которое читатель проведет самостоятельно; удобно использовать формулу для произведения суммы двух чисел на их разность).
Доказана следующая
Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а их произведение равно свободному члену.
В случае неприведенного квадратного уравнения следует в формулы (60.1) подставить выражения формулы (60.1) примут вид
Пример 1. Составить квадратное уравнение по его корням:
Решение, а) Находим уравнение имеет вид
Пример 2. Найти сумму квадратов корней уравнения не решая самого уравнения.
Решение. Известны сумма и произведение корней. Представим сумму квадратов корней в виде
и получим
Из формул Виета легко получить формулу
выражающую правило разложения квадратного трехчлена на множители.
В самом деле, напишем формулы (60.2) в виде
Теперь имеем
что и требовалось получить.
Вышеуказанный вывод формул Виета знаком читателю из курса алгебры средней школы. Можно дать другой вывод, использующий теорему Безу и разложение многочлена на множители (пп. 51, 52).
Пусть корни уравнения тогда по общему правилу (52.2) трехчлен в левой части уравнения разлагается на множители:
Раскрывая скобки в правой части этого тождественного равенства, получим
и сравнение коэффициентов при одинаковых степенях даст нам формулы Виета (60.1).
Преимущество этого вывода состоит в том, что его можно применить и к уравнениям высших степеней с тем, чтобы получить выражения коэффициентов уравнения через его корни (не находя самих корней!). Например, если корни приведенного кубического уравнения
суть то согласно равенству (52.2) находим
(в нашем случае Раскрыв скобки в правой части равенства и собрав коэффициенты при различных степенях получим
Данный онлайн-калькулятор предназначен для разложения функции на множители.
Например, разложить на множители: x 2 /3-3x+12 . Запишем как x^2/3-3*x+12 . Также можно использовать и этот сервис , где все выкладки сохраняются в формате Word .
Например, разложить на слагаемые . Запишем как (1-x^2)/(x^3+x) . Чтобы посмотреть ход решения, нажимаем Show steps . Если необходимо получить результат в формате Word используйте этот сервис .
Примечание : число "пи" (π) записывается как pi ; корень квадратный как sqrt , например, sqrt(3) , тангенс tg записывается как tan . Для просмотра ответа см. раздел Alternative .
- Если задано простое выражение, например, 8*d+12*c*d , то выражение разложить на множители означает представить выражение в виде сомножителей. Для этого необходимо найти общие множители. Данное выражение запишем как: 4*d*(2+3*c) .
- Представить произведение в виде двух двучленов: x 2 + 21yz + 7xz + 3xy . Здесь уже надо найти несколько общих сомножителей: x(x+7z) + 3y(x + 7z). Выносим (x+7z) и получаем: (x+7z)(x + 3y) .
см. также Деление многочленов уголком (показаны все шаги деления столбиком)
Полезным при изучении правил разложения на множители будут формулы сокращенного умножения , с помощью которых будет ясно, как раскрывать скобки с квадратом:
- (a+b) 2 = (a+b)(a+b) = a 2 +2ab+b 2
- (a-b) 2 = (a-b)(a-b) = a 2 -2ab+b 2
- (a+b)(a-b) = a 2 - b 2
- a 3 +b 3 = (a+b)(a 2 -ab+b 2)
- a 3 -b 3 = (a-b)(a 2 +ab+b 2)
- (a+b) 3 = (a+b)(a+b) 2 = a 3 +3a 2 b + 3ab 2 +b 3
- (a-b) 3 = (a-b)(a-b) 2 = a 3 -3a 2 b + 3ab 2 -b 3
Методы разложения на множители
Изучив несколько приемов разложение на множители можно составить следующую классификацию решений:- Использование формул сокращенного умножения.
- Поиск общего множителя.
Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.
Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена
, т.е. делает преобразование вида:\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)
Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)
Программа не только даёт ответ задачи, но и отображает процесс решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.
Правила ввода квадратного многочлена
В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)
При вводе выражения можно использовать скобки
. В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)
Пример подробного решения
Выделение квадрата двучлена.
$$ ax^2+bx+c \rightarrow a(x+p)^2+q $$
$$2x^2+2x-4 = $$
$$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$
$$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$
$$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$
Ответ:
$$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$
Разложение на множители.
$$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$
$$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$
$$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$
$$ 2 \left(x -1 \right) \left(x +2 \right) $$
Ответ:
$$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$
Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .
Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...
Если вы заметили ошибку в решении
, то об этом вы можете написать в Форме обратной связи .
Не забудьте указать какую задачу
вы решаете и что вводите в поля
.
Наши игры, головоломки, эмуляторы:
Немного теории.
Выделение квадрата двучлена из квадратного трехчлена
Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .
Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.
\(2x^2+12x+14 = 2(x^2+6x+7) \)
Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$
$$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$
Т.о. мы выделили квадрат двучлена из квадратного трехчлена
, и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$
Разложение на множители квадратного трехчлена
Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .
Покажем на примере как это преобразование делается.
Разложим квадратный трехчлен 2x 2 +4x-6 на множители.
Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)
Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$
Т.о. мы разложили на множители квадратный трехчлен
, и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$
Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому
трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0
имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3,
т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.
У него – квадрат, а состоит он из трех слагаемых (). Вот и получается – квадратный трехчлен.
Примеры не квадратных трехчленов:
\(x^3-3x^2-5x+6\) - кубический четырёхчлен
\(2x+1\) - линейный двучлен
Корень квадратного трехчлена:
Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)
Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).
\(D=4-4\cdot1=0\)
\(x=\frac{2-0}{2}=\frac{2}{2}=1\)
Готово. Корень равен \(1\).
Разложение квадратного трёхчлена на :
Квадратный трехчлен \(ax^2+bx+c\) можно разложить как \(a(x-x_1)(x-x_2)\), если уравнения \(ax^2+bx+c=0\) больше нуля \(x_1\) и \(x_2\) - корни того же уравнения).
Например
, рассмотрим трехчлен \(3x^2+13x-10\).
У квадратного уравнения \(3x^2+13x-10=0\) дискриминант равен 289 (больше нуля), а корни равны \(-5\) и \(\frac{2}{3}\). Поэтому \(3x^2+13x-10=3(x+5)(x-\frac{2}{3})\). В верности этого утверждения легко убедится – если мы , то получим исходный трехчлен.
Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.
Например , рассмотрим трехчлен \(x^2+6x+9\).У квадратного уравнения \(x^2+6x+9=0\) дискриминант равен \(0\), а единственный корень равен \(-3\). Значит, \(x^2+6x+9=(x+3)^2\) (здесь коэффициент \(a=1\), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по .
Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.
Например , у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.
Пример
. Разложите на множители \(2x^2-11x+12\).
Решение
:
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)
\(D=11^2-4 \cdot 2 \cdot 12=121-96=25>0\)
\(x_1=\frac{11-5}{4}=1,5;\) \(x_2=\frac{11+5}{4}=4.\)
Значит, \(2x^2-11x+12=2(x-1,5)(x-4)\)
Ответ
: \(2(x-1,5)(x-4)\)
Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).
Пример
. (Задание из ОГЭ)
Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac{-33-17}{10}=-5\)
\(x_2=\frac{-33+17}{10}=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ
: \(-1,6\)
Разложение квадратного трехчлена на множители может пригодится при решении неравенств из задачи С3 или задачи с параметром С5. Так же многие текстовые задачи B13 решатся значительно быстрее, если вы владеете теоремой Виета.
Эту теорему, конечно, можно рассматривать с позиций 8-го класса, в котором она впервые проходится. Но наша задача - хорошо подготовиться к ЕГЭ и научиться решать задания экзамена максимально эффективно. Поэтому в этом уроке рассмотрен подход немного отличный от школьного.
Формулу корней уравнения по теореме Виета знают (или хотя бы видели) многие:
$$x_1+x_2 = -\frac{b}{a}, \quad x_1 · x_2 = \frac{c}{a},$$
где `a, b` и `c` - коэффициенты квадратного трехчлена `ax^2+bx+c`.
Чтобы научиться легко пользоваться теоремой, давайте поймем, откуда она берется (так будет реально легче запомнить).
Пусть перед нами есть уравнение `ax^2+ bx+ с = 0`. Для дальнейшего удобства разделим его на `a` получим `x^2+\frac{b}{a} x + \frac{c}{a} = 0`. Такое уравнение называется приведенным квадратным уравнением.
Важная мысль урока: любой квадратный многочлен, у которого есть корни, можно разложить на скобки. Предположим, что наш можно представить в виде `x^2+\frac{b}{a} x + \frac{c}{a} = (x + k)(x+l)`, где `k` и `l` - некоторые константы.
Посмотрим, как раскроются скобки:
$$(x + k)(x+l) = x^2 + kx+ lx+kl = x^2 +(k+l)x+kl.$$
Таким образом, `k+l = \frac{b}{a}, kl = \frac{c}{a}`.
Это немного отличается от классической трактовки теоремы Виета - в ней мы ищем корни уравнения. Я же предлагаю искать слагаемые для разложения на скобки - так не нужно помнить про минус из формулы (имеется в виду `x_1+x_2 = -\frac{b}{a}`). Достаточно подобрать два таких числа, сумма которых равна среднему коэффициенту, а произведение - свободному члену.
Если нам нужно решение именно уравнения, то оно очевидно: корни `x=-k`или `x=-l` (так как в этих случаях одна из скобок занулится, значит, будет равно нулю и все выражение).
На примере покажу алгоритм, как раскладывать квадратный многочлен на скобки.
Пример первый. Алгоритм разложения квадратного трехчлена на множители
Путь у нас есть квадртаный трехчлен `x^2+5x+4`.
Он приведенный (коэффициент у `x^2` равен единице). Корни у него есть. (Для верности можно прикинуть дискриминант и убедиться, что он больше нуля.)
Дальнейшие шаги (их нужно выучить, выполнив все тренировочные задания):
- Выполнить следующую запись: $$x^2+5x+4=(x \ldots)(x \ldots).$$ Вместо точек оставьте свободное место, туда будем дописывать подходящие числа и знаки.
- Рассмотреть все возможные варианты, как можно разложить число `4` на произведение двух чисел. Получим пары "кандидатов" на корни уравнения: `2, 2` и `1, 4`.
- Прикинуть, из какой пары можно получить средний коэффициент. Очевидно, что это `1, 4`.
- Записать $$x^2+5x+4=(x \quad 4)(x \quad 1)$$.
- Следующий этап - расставить знаки перед вставленными числами.
Как понять и навсегда запомнить, какие знаки должны быть перед числами в скобках? Попробуйте раскрыть их (скобки). Коэффициент перед `x` в первой степени будет `(± 4 ± 1)` (пока что знаков мы не знаем - нужно выбрать), и он должен равняться `5`. Очевидно, что здесь будут два плюса $$x^2+5x+4=(x + 4)(x + 1)$$.
Выполните эту операцию несколько раз (привет, тренировочные задания!) и больше проблем с этим не будет никогда.
Если нужно решить уравнение `x^2+5x+4`, то теперь его решение не составит труда. Его корни: `-4, -1`.
Пример второй. Разложение на множители квадратного трехчлена с коэффициентами различных знаков
Пусть нам нужно решить уравнение `x^2-x-2=0`. Навскидку дискриминант положительный.
Идем по алгоритму.
- $$x^2-x-2=(x \ldots) (x \ldots).$$
- Разложение двойки на целые множители есть только одно: `2 · 1`.
- Пропускаем пункт - выбирать не из чего.
- $$x^2-x-2=(x \quad 2) (x \quad 1).$$
- Произведение наших чисел отрицательное (`-2` - свободный член), значит, одно из них будет отрицательное, а другое - положительное.
Поскольку их сумма равна `-1` (коэффициент при `x`), то отрицательным будет `2` (интуитивное объяснение - двойка большее из двух чисел, оно сильнее "перетянет" в отрицательную сторону). Получим $$x^2-x-2=(x - 2) (x + 1).$$
Третий пример. Разложение квадратного трехчлена на множители
Уравнение `x^2+5x -84 = 0`.
- $$x+ 5x-84=(x \ldots) (x \ldots).$$
- Разложение 84 на целые множители: `4· 21, 6· 14, 12· 7, 2·42`.
- Поскольку нам нужно, чтобы разница (или сумма) чисел равнялась 5, то нам подойдет пара `7, 12`.
- $$x+ 5x-84=(x\quad 12) (x \quad 7).$$
- $$x+ 5x-84=(x + 12) (x - 7).$$
Надеюсь, разложение этого квадратного трехчлена на скобки понятно.
Если нужно решение уравнения, то вот оно: `12, -7`.
Задания для тренировки
Предлагаю вашему вниманию несколько примеров, которые легко решаются с помощью теоремы Виета. (Примеры взяты из журнала "Математика", 2002.)
- `x^2+x-2=0`
- `x^2-x-2=0`
- `x^2+x-6=0`
- `x^2-x-6=0`
- `x^2+x-12=0`
- `x^2-x-12=0`
- `x^2+x-20=0`
- `x^2-x-20=0`
- `x^2+x-42=0`
- `x^2-x-42=0`
- `x^2+x-56=0`
- `x^2-x-56=0`
- `x^2+x-72=0`
- `x^2-x-72=0`
- `x^2+x-110=0`
- `x^2-x-110=0`
- `x^2+x-420=0`
- `x^2-x-420=0`
Спустя пару лет после написания статьи появился сборник из 150 заданий для разложения квадратного многочлена по теореме Виета.
Ставьте лайки и задавайте вопросы в комментариях!