» » По графику функции y ax2 bx c. Показательная функция – свойства, графики, формулы. Задачи для самостоятельного решения

По графику функции y ax2 bx c. Показательная функция – свойства, графики, формулы. Задачи для самостоятельного решения

Презентация и урок на тему:
"График функции $y=ax^2+bx+c$. Свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Дорофеева Г.В. Пособие к учебнику Никольского С.М.

Ребята, на последних уроках мы строили большое количество графиков, в том числе много парабол. Сегодня мы обобщим полученные знания и научимся строить графики этой функции в самом общем виде.
Давайте рассмотрим квадратный трехчлен $a*x^2+b*x+c$. $а, b, c$ называются коэффициентами. Они могут быть любыми числами, но $а≠0$. $a*x^2$ называется старшим членом, $а$ – старшим коэффициентом. Стоит заметить, что коэффициенты $b$ и $c$ могут быть равными нулю, то есть трехчлен будет состоять из двух членов, а третий равен нулю.

Давайте рассмотрим функцию $y=a*x^2+b*x+c$. Это функция называется "квадратичной", потому что старшая степень вторая, то есть квадрат. Коэффициенты такие же, как определено выше.

На прошлом уроке в последнем примере, мы разобрали построение графика схожей функции.
Давайте докажем, что любую такую квадратичную функцию можно свести к виду: $y=a(x+l)^2+m$.

График такой функции строится с использованием дополнительной системы координат. В большой математике, числа встречаются довольно редко. Практически любую задачу требуется доказать в самом общем случае. Сегодня мы разберем одно из таких доказательств. Ребята, вы сможете, увидеть всю силу математического аппарата, но так же и его сложность.

Выделим полный квадрат из квадратного трехчлена:
$a*x^2+b*x+c=(a*x^2+b*x)+c=a(x^2+\frac{b}{a}*x)+c=$ $=a(x^2+2\frac{b}{2a}*x+\frac{b^2}{4a})-\frac{b^2}{4a}+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$.
Мы получили, то что хотели.
Любую квадратичную функцию можно представить в виде:
$y=a(x+l)^2+m$, где $l=\frac{b}{2a}$, $m=\frac{4ac-b^2}{4a}$.

Для построения графика $y=a(x+l)^2+m$ нужно построить график функции $y=ax^2$. Причем вершина параболы будет находиться в точке с координатами $(-l;m)$.
Итак, наша функция $y=a*x^2+b*x+c$ - парабола.
Осью параболы будет являться прямая $x=-\frac{b}{2a}$, причем координаты вершины параболы по оси абсцисс, как мы можем заметить, вычисляется формулой: $x_{в}=-\frac{b}{2a}$.
Для вычисления координаты вершины параболы по оси ординат, вы можете:

  • воспользоваться формулой: $y_{в}=\frac{4ac-b^2}{4a}$,
  • напрямую подставить в исходную функцию координату вершины по $х$: $y_{в}=ax_{в}^2+b*x_{в}+c$.
Как вычислять ординату вершины? Опять же выбор за вами, но обычно вторым способом посчитать будет проще.
Если требуется описать какие-то свойства или ответить на какие-то определенные вопросы, не всегда нужно строить график функции. Основные вопросы, на которые можно ответить без построения, рассмотрим в следующем примере.

Пример 1.
Без построения графика функции $y=4x^2-6x-3$ ответьте на следующие вопросы:


Решение.
а) Осью параболы служит прямая $x=-\frac{b}{2a}=-\frac{-6}{2*4}=\frac{6}{8}=\frac{3}{4}$.
б) Абсциссу вершины мы нашли выше $x_{в}=\frac{3}{4}$.
Ординату вершины найдем непосредственной подстановкой в исходную функцию:
$y_{в}=4*(\frac{3}{4})^2-6*\frac{3}{4}-3=\frac{9}{4}-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}$.
в) График, требуемой функции, получится параллельным переносом графика $y=4x^2$. Его ветви смотрят вверх, а значит и ветви параболы исходной функции также будет смотреть вверх.
Вообще, если коэффициент $а>0$, то ветви смотрят вверх, если коэффициент $a
Пример 2.
Построить график функции: $y=2x^2+4x-6$.

Решение.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{4}{4}=-1$.
$y_{в}=2*(-1)^2+4(-1)-6=2-4-6=-8$.
Отметим координату вершины на оси координат. В этой точке, как будто в новой системе координат построим параболу $y=2x^2$.

Существует множество способов, упрощающих построение графиков параболы.

  • Мы можем найти две симметричные точки, вычислить значение функции в этих точках, отметить их на координатной плоскости и соединить их с вершиной кривой, описывающей параболу.
  • Мы можем построить ветвь параболы правее или левее вершины и потом ее отразить.
  • Мы можем строить по точкам.

Пример 3.
Найти наибольшее и наименьшее значение функции: $y=-x^2+6x+4$ на отрезке $[-1;6]$.

Решение.
Построим график данной функции, выделим требуемый промежуток и найдем самую нижнюю и самую высокую точки нашего графика.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{6}{-2}=3$.
$y_{в}=-1*(3)^2+6*3+4=-9+18+4=13$.
В точке с координатами $(3;13)$ построим параболу $y=-x^2$. Выделим требуемый промежуток. Самая нижняя точка имеет координату -3, самая высокая точка - координату 13.
$y_{наим}=-3$; $y_{наиб}=13$.

Задачи для самостоятельного решения

1. Без построения графика функции $y=-3x^2+12x-4$ ответьте на следующие вопросы:
а) Укажите прямую, служащую осью параболы.
б) Найдите координаты вершины.
в) Куда смотрит парабола (вверх или вниз)?
2. Построить график функции: $y=2x^2-6x+2$.
3. Построить график функции: $y=-x^2+8x-4$.
4. Найти наибольшее и наименьшее значение функции: $y=x^2+4x-3$ на отрезке $[-5;2]$.

Урок по теме «Функция y=ax^2, ее график и свойства» изучается в курсе алгебры 9 класса в системе уроков по теме «Функции». Данный урок требует тщательной подготовки. А именно, таких методов и средств обучения, которые дадут поистине хорошие результаты.

Автор данного видеоурока позаботился о том, чтобы помочь учителям при подготовке к урокам по этой теме. Он разработал видеоурок с учетом всех требований. Материал подобран по возрасту школьников. Он не перегружен, но достаточно емок. Автор подробно рассказывает материал, останавливаясь на более важных моментах. Каждый теоретический пункт сопровождается примером, чтобы восприятие учебного материала было гораздо эффективнее и качественнее.

Урок может быть использован учителем на обычном уроке алгебры в 9 классе в качестве определенного этапа урока - объяснение нового материала. Учителю не придется в этот период ничего говорить или рассказывать. Ему достаточно включить этот видеоурок и следить за тем, чтобы обучающиеся внимательно слушали и записывали важные моменты.

Урок может использоваться и школьниками при самостоятельной подготовке к уроку, а также для самообразования.

Длительность урока составляет 8:17 минут. В начале урока автор замечает, что одной из важных функций является квадратичная функция. Затем вводится квадратичная функция с математической точки зрения. Дается ее определение с пояснениями.

Далее автор знакомит обучающихся с областью определения квадратичной функции. На экране появляется правильная математическая запись. После этого автор рассматривает пример квадратичной функции на реальной ситуации: за основу взята физическая задача, где показано, как зависит путь от времени при равноускоренном движении.

После этого автор рассматривает функцию y=3x^2. На экране появляется построение таблицы значений этой функции и функции y=x^2. Согласно данным этих таблиц строятся графики функций. Здесь же в рамке появляется пояснение, как получается график функции y=3x^2 из y=x^2.

Рассмотрев два частных случая, примера функции y=ax^2, автор приходит к правилу, как получается график этой функции из графика y=x^2.

Далее рассматривается функция y=ax^2, где a<0. И, подобно тому, как строились графики функций до этого, автор предлагает построить график функции y=-1/3 x^2. При этом он строит таблицу значений, строит графики функций y=-1/3 x^2 и, замечая при этом закономерность расположения графиков между собой.

Затем из свойств выводятся следствия. Их четыре. Среди них появляется новое понятие - вершины параболы. Далее следует замечание, где говорится, какие преобразования возможны для графика данной функции. После этого говорится о том, как получается график функции y=-f(x) из графика функции y=f(x), а также y=af(x) из y=f(x).

На этом урок, содержащий учебный материал заканчивается. Остается его закрепить, подобрав соответствующие задания в зависимости от способностей обучающихся.

Методическая разработка урока алгебры в 9 классе.

Плохой учитель преподносит истину, хороший учит её добывать.

А.Дистервег

Учитель : Нетикова Маргарита Анатольевна, учитель математики ГБОУ школа №471 Выборгского района Санкт- Петербурга.

Тема урока: «График функции y = ax 2 »

Тип урока: урок усвоения новых знаний.

Цель: научить учащихся строить график функцииy = ax 2 .

Задачи:

Обучающие: сформировать умение строить параболу y = ax 2 и установить закономерность между графиком функции y = ax 2

и коэффициентом а.

Развивающие: развитие познавательных умений, аналитического и сравнительного мышления, математической грамотности, способности обобщать и делать выводы.

Воспитывающие: воспитание интереса к предмету, аккуратности, ответственности, требовательности к себе и другим.

Планируемые результаты:

Предметные: уметь по формуле определять направление ветвей параболы и строить её с помощью таблицы.

Личностные: уметь отстаивать свою точку зрения и работать в парах, в коллективе.

Метапредметные: уметь планировать и оценивать процесс и результат своей деятельности, обрабатывать информацию.

Педагогические технологии: элементы проблемного и опережающего обучения.

Оборудование: интерактивная доска, компьютер, раздаточные материалы.

1.Формула корней квадратного уравнения и разложение квадратного трёхчлена на множители.

2.Сокращение алгебраических дробей.

3.Свойства и график функции y = ax 2 , зависимость направления ветвей параболы, её «растяжения» и «сжатия» вдоль оси ординат от коэффициента a .

Структура урока.

1.Организационная часть.

2.Актуализация знаний:

Проверка домашнего задания

Устная работа по готовым чертежам

3.Самостоятельная работа

4.Объяснение нового материала

Подготовка к изучению нового материала (создание проблемной ситуации)

Первичное усвоение новых знаний

5.Закрепление

Применение знаний и умений в новой ситуации.

6.Подведение итогов урока.

7.Домашнее задание.

8.Рефлексия урока.

Технологическая карта урока алгебры в 9 классе по теме: «График функции y = ax 2 »


Этапы урока

Задачи этапа

Деятельность учителя

Деятельность учащихся

УУД

1.Организационная часть

1 минута


Создание рабочего настроения в начале урока

Здоровается с учениками,

проверяет их подготовку к уроку, отмечает отсутствующих, записывает на доске дату.


Готовятся к работе на уроке, приветствуют учителя

Регулятивные:

организация учебной деятельности.


2.Актуализация знаний

4 минуты


Проверить выполнение домашнего задания, повторить и обобщить изученный на прошлых уроках материал и создать условия для успешного выполнения самостоятельной работы.

Собирает тетради у шести учеников (выборочно по два с каждого ряда) для проверки домашнего задания на оценку (приложение 1), затем работает с классом на интерактивной доске

(приложение 2) .


Шесть учащихся сдают на проверку тетради с домашним заданием, затем отвечают на вопросы фронтального опроса (приложение 2) .

Познавательные:

приведение знаний в систему.

Коммуникативные:

умение прислушиваться к мнению окружающих.

Регулятивные:

оценивание результатов своей деятельности.

Личностные:

оценивание уровня усвоения материала.


3.Самостоятельная работа

10 минут


Проверить умение раскладывать на множители квадратный трёхчлен, сокращать алгебраические дроби и описывать некоторые свойства функций по её графику.

Раздаёт учащимся карточки с индивидуальным дифференцированным заданием (приложение 3) .

и листочки для решения.


Выполняют самостоятельную работу, самостоятельно выбирая уровень сложности упражнений по баллам.

Познавательные:

Личностные:

оценивание уровня усвоения материала и своих возможностей.


4.Объяснение нового материала

Подготовка к изучению нового материала

Первичное усвоение новых знаний


Создание благоприятной обстановки для выхода из проблемной ситуации,

восприятия и осмысления нового материала,

самостоятельного

прихода к правильному выводу


Итак, вы умеете строить график функции y = x 2 (графики заранее построены на трёх досках). Назовите основные свойства этой функции:

3. Координаты вершины

5. Промежутки монотонности

Чему в данном случае равен коэффициент при x 2 ?

На примере квадратного трёхчлена вы видели, что это совершенно не обязательно. Каким он может быть по знаку?

Приведите примеры.

Как будут выглядеть параболы с другими коэффициентами, вам предстоит узнать самим.

Лучший способ изучить

что-либо–это открыть самому.

Д.Пойа

Делимся на три команды (по рядам), выбираем капитанов, которые выходят к доске. Задание для команд написано на трёх досках, соревнование начинается!

В одной системе координат построить графики функций

1 команда:

а)y=x 2 б)y= 2x 2 в)y= x 2

2 команда:

а)y= - x 2 б)y=-2x 2 в)y= - x 2

3 команда:

а)y=x 2 б)y=4x 2 в)y=-x 2

Задание выполнено!

(приложение 4) .

Найдите функции, обладающие одинаковыми свойствами.

Капитаны советуются со своими командами.

От чего это зависит?

А чем же эти параболы всё-таки различаются и почему?

От чего зависит «толщина» параболы?

От чего зависит направление ветвей параболы?

Будем условно называть график а) «исходным». Представьте себе резинку: если её растягивать, она становится тоньше. Значит, график б) получен растяжением исходного графика вдоль оси ординат.

Как получен график в)?

Значит, при x 2 может стоять любой коэффициент, который влияет на конфигурацию параболы.

Вот и тема нашего урока звучит так:

«График функции y = ax 2 »


1. R

4. Ветви вверх

5. Убывает на (-

Возрастает на }