ОПРЕДЕЛЕНИЕ
Железо - двадцать шестой элемент Периодической таблицы. Обозначение - Fe от латинского «ferrum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 26.
Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.
К важнейшим рудам железа относятся магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ×3H 2 O и шпатовый железняк FeCO 3 .
Железо - серебристый (рис. 1) пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.
Рис. 1. Железо. Внешний вид.
Атомная и молекулярная масса железа
Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.
Поскольку в свободном состоянии железо существует в виде одноатомных молекул Fe значения его атомной и молекулярной масс совпадают. Они равны 55,847.
Аллотропия и аллотропные модификации железа
Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 o С и от 1394 o С до температуры плавления. Температура плавления железа равна 1539 ± 5 o С. Между 912 o С и от 1394 o С устойчиво γ-железо.
Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры. При температурах ниже 912 o С и выше 1394 o С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912 — 1394 o С - больше.
Изотопы железа
Известно, что в природе железо может находиться в виде четырех стабильных изотопов 54 Fe, 56 Fe, 57 Fe и 57 Fe. Их массовые числа равны 54, 56, 57 и 58 соответственно. Ядро атома изотопа железа 54 Fe содержит двадцать шесть протонов и двадцать восемь нейтронов, а остальные изотопы отличаются от него только числом нейтронов.
Существуют искусственные изотопы железа с массовыми числами от 45-ти до 72-х, а также 6 изомерных состояний ядер. Наиболее долгоживущим среди вышеперечисленных изотопов является 60 Fe с периодом полураспада равным 2,6 млн. лет.
Ионы железа
Электронная формула, демонстрирующая распределение по орбиталям электронов железа выглядит следующим образом:
1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .
В результате химического взаимодействия железо отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:
Fe 0 -2e → Fe 2+ ;
Fe 0 -3e → Fe 3+ .
Молекула и атом железа
В свободном состоянии железо существует в виде одноатомных молекул Fe. Приведем некоторые свойства, характеризующие атом и молекулу железа:
Сплавы железа
До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами.
В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.
Примеры решения задач
ПРИМЕР 1
Задание | Элементарный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу. |
Решение | Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:
ω (Х) = n × Ar (X) / M (HX) × 100%. Обозначим число атомов железа в молекуле через «х», число атомов кислорода через «у». Найдем соответствующие относительные атомные массы элементов железа и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Ar(Fe) = 56; Ar(O) = 16. Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения: x:y= ω(Fe)/Ar(Fe) : ω(O)/Ar(O); x:y = 72,41/56: 27,59/16; x:y = 1,29: 1,84. Наименьшее число примем за единицу (т.е. все числа разделим на наименьшее число 1,29): 1,29/1,29: 1,84/1,29; Следовательно, простейшая формула соединения железа с кислородом имеет вид Fe 2 O 3 . |
Ответ | Fe 2 O 3 |
Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.
Размеры ионных радиусов подчиняются следующим закономерностям:
1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.
2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe 2+ , Fe 3+ эффективный радиус равен 0, 126, 0, 080 и 0, 067 нм соответственно, у Si 4- , Si, Si 4+ эффективный радиус равен 0, 198, 0, 118 и 0, 040 нм.
3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).
Атомный радиус химического элемента зависит от координационного числа . Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 о С, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0, 8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т.е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.
Атомные (ионные) радиусы зависят также от типа химической связи.
В кристаллах с металлической связью атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов металлические атомные радиусы меняются сложным образом.
Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0, 154 нм.
Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.
Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).
При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.
Рис 46. Соприкасающиеся частицы в кристалле
Применение рентгеновых лучей к исследованию кристаллов дает возможность не только устанавливать внутреннее строение последних, но и определять размеры частиц, образующих кристалл, - атомов или ионов.
Чтобы понять, как производятся такие вычисления, представим себе, что частицы, из которых построен кристалл, имеют сферическую форму и соприкасаются друг с другом. В таком случае мы можем считать, что расстояние между центрами двух соседних частиц равно сумме их радиусов (рис. 46). Если частицами являются атомы простого и расстояние между ними измерено, тем самым определяется и радиус атома, очевидно, равный половине найденного расстояния. Например, зная, что для кристаллов металлического натрия константа решеткиd равна 3,84 ангстрема, находим, что радиус r атома натрия равен.
Несколько сложнее производится определение радиусов различных ионов. Здесь уже нельзя просто делить расстояние между ионами пополам, так как размеры ионов неодинаковы. Но если радиус одного из ионов r 1 известен, радиус другого r 2 легко находится простым вычитанием:
r 2 = d - r 1
Отсюда следует, что для вычисления радиусов различных ионов по константам кристаллических решеток нужно знать радиус хотя бы какого-нибудь одного иона. Тогда нахождение радиусов всех остальных ионов уже не представит затруднений.
При помощи оптических методов удалось довольно точно определить радиусы ионов фтора F — (1,33 А) и кислорода O — (1,32 А); эти радиусы и служат исходными величинами при вычислении радиусов других ионов. Так, например, определение константы решетки окиси магния MgO показало, что она равна 2,1 ангстрема. Вычитая отсюда величину радиуса иона кислорода, находим радиус иона магния:
2,1 - 1,32 = 0,78 Å
Константа решетки фтористого натрия равняется 2,31 Å; так как радиус иона фтора 1,33 ангстрема, радиус иона натрия должен равняться:
2,31 -1,33 = 0,98 Å
Зная радиус иона натрия и константу решетки хлористого натрия, легко рассчитать радиус иона хлора и т. д.
Таким путем определены радиусы почти всех атомов и ионов.
Общее представление о размерах этих величин дают данные, приведенные в табл. 7.
Таблица 7
Радиусы атомов и ионов некоторых элементов
Элемент | Радиус атома | Радиус иона | Символ иона |
1,92 | 0,98 | Na+ | |
2,38 | 1,33 | К + | |
2,51 | 1,49 | Rb+ | |
2,70 | 1,65 | Cs+ | |
1,60 | 0,78 | Mg++ | |
1,97 | 1,06 | Са++ | |
2,24 | 1,43 | Ва++ | |
0,67 | 1,33 | F- | |
1,07 | 1,81 | Сl- | |
1,19 | 1,96 | Вr- | |
1,36 | 2,20 | J- | |
1,04 | 1,74 | S— |
Как показывают эти данные, у металлов радиусы атомов больше, чем радиусы ионов, у металлоидов, наоборот, радиусы ионов больше, чем радиусы атомов.
Относительные размеры ионов, образующих кристалл, оказывают огромное влияние на структуру пространственной решетки. Так, например, два очень сходных по своей химической природе - CsCl и NaCl тем не менее образуют решетки различного типа, причем в первом случае каждый положительный ион окружен восьмью отрицательными ионами, а во втором - только шестью. Это различие объясняется тем, что размеры ионов цезия
и натрия неодинаковы. Ряд соображений заставляет принять, что ионы должны располагаться в кристалле так, чтобы каждый меньший ион по возможности целиком заполнял пространство между окружающими его большими ионами и наоборот; другими словами, отрицательные ионы, которые почти всегда больше положительных, должны возможно теснее окружать положительные ионы, иначе система будет неустойчивой. Так как радиус иона Cs + равен 1,65 Å, а иона Na + только 0,98 Å, то очевидно, что вокруг первого может разместиться больше ионов Сl — , чем вокруг второго.
Число отрицательных ионов, окружающих каждый положительный ион в кристалле, называется координационным числом данной решетки. Изучение структуры различных кристаллов показывает, что наиболее часто встречаются следующие координационные числа: 2, 3, 4, 6, 8 и 12.
Координационное число зависит от отношения радиуса положительного иона к радиусу отрицательного иона: чем ближе это отношение к единице, тем больше координационное число. Рассматривая ионы как шары, расположенные в кристалле по способу наиболее плотной упаковки, можно рассчитать, при каком соотношении между радиусом положительного и отрицательного ионов должно получиться то или иное координационное число.
Ниже приведены вычисленные теоретически наибольшие координационные числа для данного отношения радиусов.
Нетрудно убедиться, что координационные числа для NaCl и CsCl, найденные по этой таблице, как раз отвечают действительному расположению ионов в кристаллах указанных веществ.
Рассмотрим зависимость некоторых свойств атомов от строения их электронных оболочек. Остановимся, прежде всего, на закономерностях изменения атомных и ионных радиусов.
Электронные облака не имеют резко очерченных границ. Поэтому понятие о размере атома не является строгим. Но если представить себе атомы в кристаллах простого вещества в виде соприкасающихся друг с другом шаров, то расстояние между центрами соседних шаров (т. е. между ядрами соседних атомов) можно принять равным удвоенному радиусу атома. Так, наименьшее межъядерное расстояние в кристаллах меди равно ; это позволяет считать, что радиус атома меди равен половине этой величины, т. е. .
Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличением Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах (радиусы атомов приведены в нм):
Это объясняется увеличивающимся притяжением электронов внешнего слоя к ядру по мере возрастания его заряда.
С началом застройки нового электронного слоя, более удаленного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются. Приведем в качестве примера значения атомных радиусов (в нм) элементов некоторых главных подгрупп:
Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних.
Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие к себе лишние электроны, заряжаются отрицательно. Образующиеся заряженные частицы называются ионами.
Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд: например, положительный трехзарядный ион алюминия обозначают , отрицательный однозарядный ион хлора - .
Потеря атомов электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома. Так, радиус атома калия составляет , а радиус иона радиусы атома хлора и иона соответственно равны 0,099 и . При этом радиус иона тем сильней отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов и составляют соответственно 0,127, 0,083 и .
В пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра. Это иллюстрируется следующими примерами (радиусы ионов даны в нм):
Такая закономерность объясняется увеличением числа электронных слоев и растущим удалением внешних электронов от ядра.
ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.
В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят, кроме железа, также кобальт (Co) и никель (Ni) . Эти три элемента образуют триаду и обладают сходными свойствами.
Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ 0,080 нм, иона Fe 3+ 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.
Железо высокой чистоты это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механичской обработки.
Физические и химические свойства: при температурах от комнатной и до 917°C, а также в интервале температур 1394-1535°C существует -Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394°C устойчиво -Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769°C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное -Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917°C, рассматривают как модификацию железа, а -Fe, устойчивое при высоких температурах (1394-1535°C), называют по традиции -Fe (представления о существовании четырех модификаций железа возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535°C, температура кипения 2750°C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 0,447В, пары Fe 3+ /Fe 2+ +0,771В.
При хранении на воздухе при температуре до 200°C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·xН 2 О.
С кислородом (O) железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы (S) и железа образуется сульфид, приближенную формулу которого можно записать как FeS.
Железо при нагревании реагирует с галогенами . Так как FeF 3 нелетуч, железо устойчиво к действию фтора (F) до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома (Br) протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода (I) образуется иодид Fe 3 I 8 .
При нагревании железо реагирует с азотом (N) , образуя нитрид железа Fe 3 N, с фосфором (P) , образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом (C) , образуя карбид Fe 3 C, с кремнием (Si) , образуя несколько силицидов, например, FeSi.
При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава .
Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.
С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):
Fe + 2HCl = FeCl 2 + H 2
Fe + H 2 SO 4 = FeSO 4 + H 2
При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):
2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O
Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:
2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O
Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:
Fe(ОН) 3 + КОН = К
Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3 .
Соединения железа (III) в растворах восстанавливаются металлическим железом:
Fe + 2FeCl 3 = 3FeCl 2
При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):
4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2
Из солей железа (II) в водных растворах устойчива соль Мора двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.
Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 железокалиевые квасцы, (NH 4)Fe(SO 4) 2 железоаммонийные квасцы и т.д.
При действии газообразного хлора (Cl) или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) ферраты, например, феррат (VI) калия (K) : K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).
Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS . При взаимодействии ионов Fe 3+ с анионами CNS образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия (K) : K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4 выпадает ярко-синий осадок.
Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия (K) K 3 , ранее называвшегося красной кровяной солью. При взаимодействии ионов Fe 3+ и 3 выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4 .
Сплавы железа с углеродом: железо используется главным образом в сплавах, прежде всего в сплавах с углеродом (C) различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0.8-1 %).
Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию нагреванию при температуре около 1000°C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей шлака. Снизу в домну подают дутье (чистый кислород (O) или воздух, обогащенный кислородом (O)). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300°C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:
Fe 2 O 3 + 3C = 2Fe + 3CO;
Fe 2 O 3 + 3CО = 2Fe + 3CO 2
возникает металлическое железо, которое насыщается углеродом (C) и стекает вниз.
Этот расплав периодически выпускают из домны через специальное отверстие клетку и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун это твердый раствор углерода (C) в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.
Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.
Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.
Если содержание углерода (C) в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома (Cr) , никеля (Ni) , молибдена (Mo) , кобальта (Co) и других металлов, улучшающие механические и иные свойства стали).
Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода (C) в сплаве до требуемого уровня, как говорят, избыточный углерод (C) выгорает.
Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.
Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.
История получения железа: железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Период с 9 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутия (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства домны, кислородные конвертеры, электродуговые печи.
Нахождение в природе: в земной коре железо распространено достаточно широко на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS 2 (другие названия серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 5 1·10 8 % железа.
Применение железа, его сплавов и соединений: чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа чугун и сталь составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.
Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент , то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков гемопротеидов, простетической группой которых является железопорфириновый комплекс гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.