» » Свойства тетраэдра, виды и формулы. Объем тетраэдра Противоположные грани тетраэдра

Свойства тетраэдра, виды и формулы. Объем тетраэдра Противоположные грани тетраэдра

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани , 6 ребер и 4 вершины .
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием , а оставшиеся три грани боковыми гранями.

Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.

Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим


Вынесем 1/2a. Получим



Применим формулу разность квадратов

После небольших преобразований получим


Объем любого тетраэдра можно рассчитать по формуле
,
где ,

Подставив эти значения, получим

Таким образом формула объема для правильного тетраэдра

где a –ребро тетраэдра

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра

Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим


Тетраэдр в переводе с греческого означает "четырехгранник". Эта геометрическая фигура обладает четырьмя гранями, четырьмя вершинами и шестью ребрами. Грани представляют собой треугольники. По сути, тетраэдр - это Первые упоминания о многогранниках появились еще задолго до существования Платона.

Сегодня поговорим об элементах и свойствах тетраэдра, а также узнаем формулы нахождения у этих элементов площади, объема и других параметров.

Элементы четырехгранника

Отрезок, выпущенный из любой вершины тетраэдра и опущенный на точку пересечения медиан грани, являющейся противоположной, называется медианой.

Высота многоугольника представляет собой нормальный отрезок, опущенный из вершины напротив.

Бимедианой называется отрезок, соединяющий центры скрещивающихся ребер.

Свойства тетраэдра

1) Параллельные плоскости, которые проходят через два скрещивающихся ребра, образуют описанный параллелепипед.

2) Отличительным свойством тетраэдра является то, что медианы и бимедианы фигуры встречаются в одной точке. Важно, что последняя делит медианы в отношении 3:1, а бимедианы - пополам.

3) Плоскость разделяет тетраэдр на две равные по объему части, если проходит через середину двух скрещивающихся ребер.

Виды тетраэдра

Видовое разнообразие фигуры достаточно широко. Тетраэдр может быть:

  • правильным, то есть в основании равносторонний треугольник;
  • равногранным, у которого все грани одинаковы по длине;
  • ортоцентрическим, когда высоты имеют общую точку пересечения;
  • прямоугольным, если плоские углы при вершине нормальные;
  • соразмерным, все би высоты равны;
  • каркасным, если присутствует сфера, которая касается ребер;
  • инцентрическим, то есть отрезки, опущенные из вершины в центр вписанной окружности противоположной грани, имеют общую точку пересечения; эту точку именуют центром тяжести тетраэдра.

Остановимся подробно на правильном тетраэдре, свойства которого практически не отличаются.

Исходя из названия, можно понять, что так он называется потому, что грани являют собой правильные треугольники. Все ребра этой фигуры конгруэнтны по длине, а грани - по площади. Правильный тетраэдр - это один из пяти аналогичных многогранников.

Формулы четырехгранника

Высота тетраэдра равна произведению корня из 2/3 и длины ребра.

Объем тетраэдра находится так же, как объем пирамиды: корень квадратный из 2 разделить на 12 и умножить на длину ребра в кубе.

Остальные формулы для расчета площади и радиусов окружностей представлены выше.

Лекция по теме «Тетраэдр»

Добрый день! Мы продолжаем с вами изучать тему: «Параллельность прямых и плоскостей».

Кристаллическая решетка метана

Тетрапакет для молока

Любимая игрушка моего детства Кубик Рубика

Уголковый отражатель

Я думаю, уже понятно, что сегодня речь пойдет о многогранниках- поверхностях геометрических тел, составленных из многоугольников.

текст

Многоугольник- часть плоскости, ограниченная замкнутой линией без самопересечений, включая ее саму.

Необходим вот такой рисунок с пояснениями или чертеж треугольника .

Картинка

А именно о тетраэдре.

Нужна анимационная картинка тетраэдра, которая вращается, грани раскрашены в разные оттенки зеленого цвета.

ТЕТРА́ЭДР [фр. tétraèdre < греч. tetra четыре + hedra сторона, основание]. геом. Четырехгранник, треугольная пирамида.

(пауза)

Проводить изучение многогранников будем по плану:

    определение тетраэдра

    элементы тетраэдра

    развертка тетраэдра

    изображение на плоскости

План изучения многогранников:

    определение тетраэдра

    элементы тетраэдра

    развертка тетраэдра

    изображение на плоскости

    построим треугольник А BC

    точка D , не лежащая в плоскости этого треугольника

    соединяем точку D отрезками с вершинами треугольника ABC . Получим треугольники DAB , DBC и DCA .

Пошагово появляется чертеж

(пауза)

Определение BC , DAB , DBC и DCA называется тетраэдром.

Обозначение : DABC .

Определение : Поверхность составленная из четырех треугольников А BC , DAB , DBC и DCA называется тетраэдром.

Обозначение : DABC .

(Пауза)

Элементы тетраэдра

Треугольники, из которых состоит тетраэдр, называются гранями, их стороны ребрами, а вершины – вершинами тетраэдра.

Сколько граней, ребер и вершин имеет тетраэдр?

Желательно чтобы появился предыдущий рисунок и элементы подписывались на чертеже и указывались стрелочками по мере их прочтения.

(пауза)

Тетраэдр имеет четыре грани, шесть ребер и четыре вершины

Два ребра тетраэдра, не имеющие общих вершин, называются противоположными.

На рисунке противоположными являются ребра AD и BC , BD и AC , CD и AB

Появляется предыдущий рисунок, по мере чтения текста цветом на рисунке выделяются противоположные вершины

Текст

противоположными ребра AD и BC , BD и AC , CD и AB

Иногда выделяют одну из граней тетраэдра и называют ее основанием, а три другие – боковыми гранями.

Развертка тетраэдра.

Для изготовления тетраэдра из бумаги вам потребуется следующая развертка,

ее нужно перенести на плотную бумагу, вырезать, согнуть по пунктирным линиям и склеить.

На экране появляется развертка тетраэдра.

На плоскости тетраэдр изображается

В виде выпуклого или невыпуклого четырехугольника с диагоналями. При этом штриховыми линиями изображаются невидимые ребра.

На первом рисунке AC - невидимое ребро,

на втором – EK , LK и KF .

Изображение тетраэдра на плоскости:

Решим несколько типовых задач на тетраэдр:

Задача 1.

Решение. Начертим развертку тетраэдра

(на экране появляется развертка тетраэдра)

Данный тетраэдр состоит из четырех равносторонних треугольников, следовательно, площадь развертки правильного тетраэдра равна площади полной поверхности тетраэдра или площади четырех правильных треугольников.

Площадь правильного треугольника ищем по формуле:

Задача 1. Найти площадь развертки правильного тетраэдра с ребром 5 см.

Площадь правильного треугольника:

Тогда получаем площадь тетраэдра равна:

Подставим в формулу длину ребра а=5 см,

получается

Ответ: Площадь развертки правильного тетраэдра

Площадь полной поверхности правильного тетраэдра

Задача 2

Постройте сечение тетраэдра плоскостью проходящей через точки M , N и K . ADC ), точки M и K (принадлежат грани ADB ), точки N и K (грани DBC ). Сечением тетраэдра является треугольник MKN .

а)

б) Соединим точки M и K (принадлежат грани ADB ), точки K и N (принадлежат грани DCB ), далее прямые MK и AB продолжить до пересечения и поставить точку P . Прямая PN и точка T лежат в одной плоскости АВС и теперь можно построить пересечение прямой МК с каждой гранью. В результате получается четырехугольник MKNT , который является искомым сечением.

б) ( Построение желательно делать поэтапно со словами диктора )

Модель мира — два сходящихся тетраэдра мироздания

Мы приступаем к самой сложной и, по-видимому, самой важной теме курса: модели двух сходящихся тетраэдров мироздания . Мы затронем эту тему лишь частично и очень кратко, поскольку изложение данной модели в полном объеме требует отдельного большого курса. Здесь же мы опишем лишь базовые вещи, необходимые для понимания процессов перехода из 7-го Дня творения в 8-й День, далее в 9-й День и 10-й День.

Модель сходящихся тетраэдров:

  • метафизическая , максимально крупномасштабная модель строения мира, описывающая общие принципы построения любой реальности в нашем мироздании;
  • целевая модель, описывающая взаимодействие всех элементов и фундаментальных принципов с точки зрения цели творения;
  • универсальная модель, действующая по системе подобий: так устроено всё — человек, семейная пара, любая группа или сообщество.

Союз Авраама

Эта модель была изложена Богом праотцу Аврааму перед заключением союза меж рассечённых частей :

И сказал ему [Аврааму]: Я Господь, Который вывел тебя из Ура Халдейского, чтобы дать тебе землю сию во владение. Он сказал: Владыка Господи! по чему мне узнать, что я буду владеть ею? Господь сказал ему: возьми Мне трехлетнюю телицу, трехлетнюю козу, трехлетнего овна, горлицу и молодого голубя. Он взял всех их, рассек их пополам и положил одну часть против другой; только птиц не рассек. И налетели на трупы хищные птицы; но Аврам отгонял их. При захождении солнца крепкий сон напал на Аврама, и вот, напал на него ужас и мрак великий. И сказал Господь Авраму: знай, что потомки твои будут пришельцами в земле не своей, и поработят их, и будут угнетать их четыреста лет, но Я произведу суд над народом, у которого они будут в порабощении; после сего они выйдут с большим имуществом, а ты отойдешь к отцам твоим в мире и будешь погребен в старости доброй; в четвертом роде возвратятся они сюда: ибо мера беззаконий Аморреев доселе еще не наполнилась. Когда зашло солнце и наступила тьма, вот, дым как бы из печи и пламя огня прошли между рассеченными животными. В этот день заключил Господь завет с Аврамом...
(Бытие 15:7-18)

Таков Синодальный перевод, и здесь про телицу, козу и овна (барана) сказано, что они «трехлетние». Однако это определение далеко от текста иврита, который ставил в тупик поколения переводчиков. В иврите написано מְשֻׁלֶּשֶׁת (мешулешет ), дословно «треугольная» или «треугольник» (про телицу и козу, женский род) и מְשֻׁלָּשׁ (мешулаш ), «треугольный» или «треугольник» (про овна, мужской род). В принципе эти слова можно перевести также как «тройной», «утроенный», «троекратный»; в еврейских переводах на русский язык можно встретить вариант «тройничный». Но основное значение все-таки связано с треугольником: это треугольник или нечто, имеющее треугольную форму.

Иначе говоря, дословно текст Библии звучит так:

...возьми Мне треугольник-телицу (равноценное прочтение треугольную телицу ), треугольник-козу (или треугольную козу ), треугольник-овна (или треугольного овна ), горлицу и молодого голубя.

Чтобы правильно понять этот текст, нужно вспомнить, что Авраам был выходцем из Шумера, а в Шумере математика была на достаточно высоком уровне. С другой стороны, он был представителем скотоводческой культуры. Таким образом, Авраам вполне мог понять геометрические образы, при этом ему была близка терминология скотоводов.

Посмотрим еще раз на формулировку עֶגְלָה מְשֻׁלֶּשֶׁת, треугольник-телица . Логически ее можно понять не одним, а двумя способами. Первый — телица, похожая на треугольник, имеющая треугольную форму, т.е. бессмыслица. Второй способ — треугольник, похожий на телицу . Согласно нашей информации, второй вариант является верным. Соответственно, горлица и голубь — тоже описания фигур, похожих на горлицу и голубя. Бог говорит:

...возьми треугольник, подобный телице, треугольник, подобный козе, и треугольник, подобный овну, а также [нечто вроде] горлицы и молодого голубя.

В чем треугольник может быть похож на телицу, козу и барана? В общем-то ничем, кроме одного: размера . Телица (корова) — очень большая, коза заметно меньше, овен (баран) еще меньше. А горлица и голубь рядом с ними очень малы, практически точки. Таким образом мы приходим к следующему чертежу, который Бог показал Аврааму:

Теперь нужно понять, что значит «рассечь пополам». Конечно, разделить пополам треугольник нетрудно, достаточно «разрезать» его вдоль некоторой прямой. Например, высота разбивает треугольник на два меньших прямоугольных треугольника. Но при этом он неизбежно теряет свою совершенную равностороннюю форму. Однако если представить себе треугольник не как бесконечно тонкую фигуру, а как материальную пластинку, имеющую некоторую толщину (что гораздо естественнее для математического мышления той эпохи), то появляется еще один способ рассечения: расщепление пластинки . Если расщепить равностороннюю треугольную пластинку вдоль ее плоскости, то мы получим два равносторонних треугольника вдвое меньшей толщины:

Согласно нашей информации, именно такое «рассечение» и было показано Аврааму.

...Он взял всех их [три треугольника и две точки], рассек их пополам [расщепил треугольники вдоль их плоскости] и разместил одну часть против другой; только точки не рассек [а разместил две точки одну напротив другой].

А поскольку рассечение происходило «в объеме», в направлении, перпендикулярном плоскости треугольника, то и размещение «напротив друг друга» логично ожидать в том же направлении. И мы приходим к следующей конфигурации:

Обновите броузер

Именно такой чертеж, согласно нашей информации, Бог показал Аврааму, когда заключал с ним знаменитый «союз меж рассечённых частей». Две половинки «телицы» — это нижнее основание нижнего тетраэдра и верхнее основание верхнего, половинки «козы» и половинки «овна» — это 4 треугольника, получаемые в сечении этих тетраэдров, наконец, «горлица» и «голубь» — верхняя вершина нижнего тетраэдра и нижняя вершина верхнего, расположенные друг против друга.

Структура модели двух тетраэдров

Это модель двух сходящихся тетраэдров , описывающая структуру мироздания и его изменения в процессе смены Дней творения. Чуть позже мы поймем, почему тетраэдры «сходящиеся», а пока отметим, что конфигурация симметрична, только это не зеркальная симметрия , а центральная . Если смотреть сверху, то верхний тетраэдр окажется повернутым на 180° относительно нижнего, а их основания будут проектироваться в правильный звездчатый шестиугольник — гексаграмму, или звезду Давида (две точки-«птицы» окажутся в ее центре):

Обновите броузер

Полная модель двух тетраэдров мироздания сложнее, чем приведенный выше чертеж. Чтобы увидеть модель целиком, мы должны усложнить чертеж:

  • два тетраэдра сдвигаются навстречу друг другу и образуют область пересечения (перекрытия);
  • на ребрах тетраэдров и на сторонах четырех треугольников сечения добавляются 38 ключевых точек, или элементов ;
  • пересечение двух тетраэдров образует сферу присутствия Шехины .

Вот как выглядит эта конфигурация для 7-го Дня творения (зритель смотрит на эту конструкцию спереди и чуть сверху):

Обновите броузер

Ниже эта конфигурация показана в цвете с дополнительными линиями, соединяющими ключевые точки. В отличие от предыдущего чертежа, здесь использована центральная проекция: зритель находится в центре, между основаниями тетраэдров, так что верхнее основание верхнего тетраэдра находится над ним, а нижнее основание нижнего тетраэдра — под ним:

Тетраэдр
שמיים
(Шамаим )
Небо

Тетраэдр
ארץ (Эрец )
Земля

יצר (Йецер ):
создание, творчество

אב ולב (Ав вэ Лев ):
точка индивидуального выбора

שלום (Шалом ):
баланс,
цельность

דין (Дин ):
закон, идеал,
то, что должно
быть

אמת (Эмет ):
истина,
реальность,
то, что есть

נשמה (Нешама ):
способность
к осмыслению,
миссия

גוף (Гуф ):
материализация, воплощение

עוז (Оз ):
мощь, энергия

38 ключевых точек (на рисунке они изображены цветными шариками) соответствуют всем основным категориям, или элементам бытия . Каждая точка-элемент имеет свое имя на иврите и свой нетривиальный смысл. Имеют также смысл линии, вдоль которых расположены точки. Точки-элементы объединяются в модули , которые можно увидеть на рисунке:

  • прямые линии, на которых лежат две или более точек — модули первого порядка;
  • правильные треугольники — модули второго порядка;
  • правильные тетраэдры — модули третьего порядка (включая исходные два больших тетраэдра).

Можно подсчитать: общее количество тетраэдров, модулей третьего порядка, равно 12, т.е. числу колен Израиля. Это 2 больших тетраэдра, 4 их подтетраэдра, образованные верхней/нижней вершинами и треугольниками сечения, а также по 3 малых тетраэдра в «углах» больших тетраэров, образованных одной из вершин основания тетраэдра (в нижнем тетраэдре красные), двумя смежными точками на сторонах основания (в нижнем тетраэдре красные) и ближайшей вершиной большего треугольника сечения (в нижнем тетраэдре оранжевая).

Все эти модули, как и точки-элементы, имеют глубокий смысл; они описывают фундаментальные принципы взаимодействия элементов. К сожалению, мы не можем в это углубляться; это тема отдельного курса.

Данная конфигурация позволяет описать любой процесс или явление в мироздании как в статике, так и в динамике, с точки зрения замысла Творца.

Отметим кратко:

  • верхний тетраэдр называется שמיים (Шама́им ), что означает «небо» из самого первого стиха Библии («В начале сотворил Бог небо и землю» , Бытие 1:1);
  • нижний тетраэдр называется ארץ (Э́рец ), то есть «земля» из того же стиха;
  • верхняя вершина нижнего тетраэдра называется יצר (Йе́цер );
  • нижняя вершина верхнего тетраэдра называется אב ולב (Ав вэ Лев ).

Указанные две вершины будут важны для дальнейшего изложения. (В пророчестве Авраама это те самые «не рассеченные птицы».)

Также отметим, что в этой конфигурации есть 6 горизонтальных плоскостей, на которых лежат 6 горизонтальных треугольников, соответствующих рассеченным частям трех животных Авраама: нижнее основание нижнего тетраэдра, верхнее основание верхнего тетраэдра и 4 треугольника сечения. Эти 6 плоскостей разделяют все пространство на 7 областей, или уровней — область ниже нижнего основания, 5 областей между плоскостями и область выше верхнего основания. Эти 7 областей пространства — не что иное, как 7 уровней мироздания , описанные во вступительной статье «Менора, или семиуровневая картина мира ».

На картинке мы подписали, ради иллюстрации, еще 6 точек — вершины верхнего и нижнего тетраэдра. С нижними тремя мы уже отчасти знакомы с ними. Нешама , Гуф и Оз , вершины нижнего основания, — это три опоры все той же Меноры. Там они названы тремя опорами мироздания, и на чертеже они действительно «держат на себе» всю конфигурацию — модель мира. Напомним, что эти три точки описываются формулами «всё неслучайно» (Нешама ), «всё материализуется» (Гуф ) и «всё развивается» (Оз ).

На чертеже этот треугольник является основанием нижнего тетраэдра, верхняя вершина которого называется Йецер , что значит «создание чего-либо, творчество». Этот тетраэдр нам тоже отчасти знаком — это тетраэдр Ноаха , описанный в разделе этого урока «Ноах и сыновья ». Ноах, или гармония , соответствует вершине Йецер — только в гармонии возможен правильный процесс творения. Шем, этика — это Нешама , то есть способность к осмыслению; Яфет, эстетика — это Гуф , то есть воплощение формы в чем-то материальном, а Хам, энергетика — это Оз , что буквально и означает мощь, энергию. Эти взаимосвязи нетривиальны и имеют глубокий смысл, но на этом мы вынуждены закончить данный экскурс. Вернемся к описанию тетраэдров в целом.

Сфера присутствия Шехины показывает, в каких элементах мироздания и в какой степени человек может увидеть и почувствовать присутствие Творца. Эта сфера соответствует внутреннему пространству, общему для двух тетраэдров. На чертеже выше тетраэды «входят» друг в друга до некоторой степени; сфера содержит всю их общую область. Математически это сфера, построенная, как на диаметре, на отрезке, соединяющем вершины двух тетраэдров Йецер и Ав вэ Лев ; на чертежах эти вершины изображены зеленым цветом (обновите броузер).

Взаимодействие человека и Творца в данной модели можно описать следующими очень общими правилами.

  1. Человек не может увидеть и почувствовать присутствие Творца в ключевых точках — элементах мироздания, лежащих вне сферы Шехины.
  2. Человек может при необходимости, в результате осознанного выбора и диалога с Творцом, увидеть и почувствовать присутствие Творца в ключевых точках — элементах мироздания, лежащих на поверхности сферы Шехины.
  3. Человек всегда видит и чувствует присутствие Творца в ключевых точках — элементах мироздания, лежащих внутри сферы Шехины.

Заметим: взаимодействие с Творцом и влияние на мироздание во 2-м и 3-м случаях не является чудом , это нормальная, совершенно штатная работа! Чудо (на иврите נס, нэс ) — это исключительная ситуация, прямое вмешательство Бога, не ограниченное данной схемой.

Mодель двух тетраэдров в динамике

Теперь пора объяснить, почему модель называется моделью сходящихся тетраэдров. Дело в том, что при каждом из переходов из 7-го Дня творения в 8-й День, из 8-го в 9-й и из 9-го в 10-й два тетраэда сдвигаются навстречу друг другу: Эрец (Земля) и Шамаим (Небо) сближаются, все сильнее перекрываясь друг с другом. При этом точки Йецер и Ав вэ Лев расходятся, следовательно, увеличивается объем сферы присутствия Шехины .

Тетраэдры мироздания: День 0

Мы рассмотрим, как менялась модель двух тетраэдров мироздания с самого начала, с 1-го Дня творения. А точнее, даже не с 1-го, а с 0-го (Нулевого Дня). Это не ошибка. Согласно нашей информаци, самый первый стих Библии относится не к первому Дню, а к ситуации, предшествующей семи Дням творения как таковым, то есть к Нулевому Дню. Вот этот стих:

В начале сотворил Бог небо и землю.

Мы уже отмечали в рассказе о временных потоках (см. выше раздел «Начало »), что «земля» и «небо», указанные в этом стихе, не являются нашей планетой и ее небесами. Это ясно хотя бы из того, что чуть дальше Бог заново вводит понятия «небо» и «земля», давая им определения: «И назвал Бог „свод“ небом...» (Бытие 1:8), «И назвал Бог сушу землею...» (Бытие 1:10). Небо (на иврите шамаим ) и земля (эрец ) из 1-го стиха — это нечто иное. Мы утверждаем, что здесь говорится о творении двух метафизических тетраэдров мироздания . Иначе говоря, смысл 1-го стиха книги Бытие следующий:

В начале (еще до 1-го Дня творения) Бог сотворил тетраэдр мироздания Шамаим и тетраэдр мироздания Эрец.

Вот эти тетраэдры — пока еще никак не ориентированные и не связанные между собой:

Обновите броузер Обновите броузер

Это расположение соответствует ситуации, когда проект Десяти Дней еще не начался, еще не проявился его внутренний порядок; по отношению к проекту это состояния хаоса: «Земля же [эрец] была — смятение и пустынность, и тьма над ликом пучины, и дуновение Божье витает над ликом вод... » (Бытие 1:2, перевод Фримы Гурфинкель).

Тетраэдры мироздания: День 1

В 1-м Дне творения на место хаосу приходит упорядоченность:

И сказал Бог: да будет свет. И стал свет. И увидел Бог свет, что он хорош, и отделил Бог свет от тьмы. И назвал Бог свет днем, а тьму ночью. И был вечер, и было утро: день один.
(Бытие 1:3-5; здесь и далее мы возвращаемся к Синодальному переводу Библии)

Конечно, этот текст соответствует событиям в реальной, известной нам Вселенной. По всей вероятности, на языке современной космологии это можно было бы описать так: произошел Большой взрыв, и новорожденная Вселенная начала развиваться согласно известным законам физики. В частности, свет (излучение) отделился от материи (частиц, имеющих массу), а Вселенная разделилась на светлые и темные области (первичные галактики и пространство между ними). Однако нашей целью является не физическое, а метафизическое понимание библейского рассказа, те глубиннные метафизические процессы, отражением которых являются космологические процессы и дальнейшая эволюция нашей планеты. Мы сконцентруемся на метафизической стороне вопроса; как уже отмечалось выше в разделе «Начало », пониманию Библии с физической точки зрения посвящено множество современных исследований.

В модели тетраэдров мироздания разделение метафизических категорий света и тьмы выражается в том, что тетраэдры заняли строго определенное положение друг против друга, один «сверху» (Шамаим , «небо»), другой «снизу» (Эрец , «земля»), причем их основания параллельны (и повернуты по отношению друг к другу на 180°), а нижняя вершина верхнего тетраэдра лежит строго над верхней вершиной нижнего:

Обновите броузер

Разделение света и тьмы ознаменовало начало проекта , который мы обсуждаем в этом курсе: проекта Десяти Дней творения.

Тетраэдры мироздания: День 2

Во 2-м Дне творения мироздание структурируется, в нем появляются различные уровни:

И сказал Бог: да будет свод посреди воды, и да отделяет он воду от воды. И создал Бог свод, и отделил воду, которая под сводом, от воды, которая над сводом. И стало так. И назвал Бог свод небом. И был вечер, и было утро: день второй.
(Бытие 1:6-8)

В модели тетраэдров появляются разделяющие плоскости , которые вместе с плоскостями нижнего и верхнего оснований тетраэдров разделяют все пространство на 7 уровней, или «этажей»:

Обновите броузер

Тетраэдры мироздания: День 3

На 3-й День творения Бог усложняет мироздание, вводя новые элементы: сушу и море, растения, «деревья» по роду и виду:

И сказал Бог: да соберется вода, которая под небом, в одно место, и да явится суша. И стало так. И назвал Бог сушу землею, а собрание вод назвал морями. И увидел Бог, что это хорошо. И сказал Бог: да произрастит земля зелень, траву, сеющую семя, и дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так. И произвела земля зелень, траву, сеющую семя по роду ее, и дерево, приносящее плод, в котором семя его по роду его. И увидел Бог, что это хорошо. И был вечер, и было утро: день третий.
(Бытие 1:9-13)

В модели мироздания появляются 38 ключевых точек-элементов, иначе говоря, проявляются все аспекты мироздания:

Обновите броузер

Тетраэдры мироздания: День 4

Главное изменение 4-го Дня творения — это «включение» времени проекта, запуск всех процессов согласно определенным ритмам: смена дня и ночи, месяцев и лет. Выше мы говорили, что в этот момент начинается первый поток времени Нефеш .

И сказал Бог: да будут светила на своде небесном для отделения дня от ночи, и для знамений, и времен, и дней, и годов; и да будут они светильниками на своде небесном, чтобы светить на землю. И стало так. И создал Бог два светила великие: светило большее, для управления днем, и светило меньшее, для управления ночью, и звезды; и поставил их Бог на своде небесном, чтобы светить на землю, и управлять днем и ночью, и отделять свет от тьмы. И увидел Бог, что это хорошо. И был вечер, и было утро: день четвёртый.
(Бытие 1:14-19)

Переход от 3-го к 4-му Дню творения — это первое перемещение тетраэдров . Они сдвигаются навстречу друг другу, и возникает область пересечения. Это центральный из 7 «этажей» мироздания, выстроенных во 2-м Дне — четвертый уровень, который в семиуровневой картине мира соответствует диалогу и времени.

Обновите броузер

Тетраэдры мироздания: День 5

В 5-м Дне творения структура модели не меняется, однако часть элементов, или аспектов мироздания получают имена , становясь понятиями .

И сказал Бог: да произведет вода пресмыкающихся, душу живую; и птицы да полетят над землею, по своду небесному. И сотворил Бог рыб больших и всякую душу животных пресмыкающихся, которых произвела вода, по роду их, и всякую птицу пернатую по роду ее. И увидел Бог, что это хорошо. И благословил их Бог, говоря: плодитесь и размножайтесь, и наполняйте воды в морях, и птицы да размножаются на земле. И был вечер, и было утро: день пятый.
(Бытие 1:20-23)

В тетраэдрах мироздания получают свои имена 8 наиболее фундаментальных элементов: 4 вершины верхнего и 4 вершины нижнего тетраэдра. Это те самые 8 имен, которые были подписаны выше на цветном изображении модели 7-го Дня. Мы не будем повторять названия вершин на чертеже, но сделаем соответствующие точки цветными:

Обновите броузер

Тетраэдры мироздания: День 6

В 6-м Дне творения получают имена, становясь понятиями , уже все ключевые точки.

И сказал Бог: да произведет земля душу живую по роду ее, скотов, и гадов, и зверей земных по роду их. И стало так. И создал Бог зверей земных по роду их, и скот по роду его, и всех гадов земных по роду их. И увидел Бог, что это хорошо. И сказал Бог: сотворим человека по образу Нашему по подобию Нашему, и да владычествуют они над рыбами морскими, и над птицами небесными, и над скотом, и над всею землею, и над всеми гадами, пресмыкающимися по земле. И сотворил Бог человека по образу Своему, по образу Божию сотворил его; мужчину и женщину сотворил их. И благословил их Бог, и сказал им Бог: плодитесь и размножайтесь, и наполняйте землю, и обладайте ею, и владычествуйте над рыбами морскими, и над птицами небесными, и над всяким животным, пресмыкающимся по земле. И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя; — вам сие будет в пищу; а всем зверям земным, и всем птицам небесным, и всякому пресмыкающемуся по земле, в котором душа живая, дал Я всю зелень травную в пищу. И стало так. И увидел Бог все, что Он создал, и вот, хорошо весьма. И был вечер, и было утро: день шестой.
(Бытие 1:24-31)

Чертеж тетраэдров мироздания 6-го Дня отличается только тем, что на этот раз все вершины имеют названия. Их названия выходят за рамки данного курса; мы отметим изменение ситуации, сделав цветными все ключевые точки:

Обновите броузер

Тетраэдры мироздания: День 7

В 7-м Дне творения система тетраэдров приобретает завершенный вид, и Бог «отдыхает» от Своих дел.

Так совершены небо и земля и все воинство их. И совершил Бог к седьмому дню дела Свои, которые Он делал, и почил в день седьмый от всех дел Своих, которые делал. И благословил Бог седьмой день, и освятил его, ибо в оный почил от всех дел Своих, которые Бог творил и созидал.
(Бытие 2:1-3)

В модели тетраэдров мироздания в этот день появляется последний ключевой элемент: сфера присутствия Шехины . Чертеж 7-го Дня мы уже приводили и подробно разбирали. Повторим его еще раз без деталей:

Обновите броузер

Здесь пока нет элементов (ключевых точек), лежащих внутри сферы Шехины. Все элементы находятся либо за ее пределами, либо на ее поверхности. (По чертежу может показаться, что 3 голубых и 3 желтых точки лежат внутри сферы, но так получается только в проекции: на самом деле они лежат на поверхности сферы.)

В авраамических религиях такая ситуация выражается идеей, что Божественное присутствие скрыто от человека: только единицы находятся в контакте с Богом и могут осознанно сотрудничать с Ним.

Тетраэдры мироздания: День 8

В 8-м Дне творения конфигурация тетраэдры сходятся навстречу друг другу так, что малые треугольники сечения оказываются в одной плоскости, а вершины Йецер и Ав вэ Лев ; (зеленые точки обновите броузер) «упираются» в основания противоположных тетраэдров:

Обновите броузер

В результате сближения тетраэдров радиус сферы присутствия Шехины увеличивается, по сравнению с 7-м Днем, в 4 / 3 ≈1.33 раза, а ее объем, символизирующий «количество присутствия Бога» в нашей жизни, — в 64 / 27 ≈2.37 раза.

Здесь впервые появляются точки, лежащие внутри сферы Шехины. Соответствующие категории «уходят на подсознание» и становятся абсолютно естественнными, как дыхание. Эти элементы — неотъемлемая часть постоянного взаимодействия с Творцом. Таким образом, теперь каждый человек всегда находится в диалоге и сотрудничестве с Богом.

При этом остаются элементы вне сферы, не зависящие от человека и не подлежащие изменению в результате такого диалога, например, физические законы Вселенной. На этом этапе, как уже говорилось выше в разделе «Задачи Десяти Дней творения », формируется единое этическое человечество.

Тетраэдры мироздания: День 9

В 9-м Дне творения тетраэдры еще больше «вдвигаются» друг в друга:

Обновите броузер

Радиус сферы присутствия Шехины увеличивается, по сравнению с 7-м Днем, в 14 / 9 ≈1.56 раза, а ее объем — в (14 / 9) 3 ≈3.76 раза.

Сейчас уже большинство элементов лежат либо внутри сферы Шехины, либо на ее поверности. Иначе говоря, большая часть категорий мироздания становятся неотъемлемой частью взаимодействия человека и Творца. Только шесть наиболее фундаментальных понятий — три упомянутые выше опоры мироздания Нешама , Гуф и Оз и три соответствуюшие им категории верхнего тетраэдра Шамаим — остаются неизменными: они вне «сферы влияния» диалога человека и Бога. Это приводит, как уже было сказано в разделе «Задачи Десяти Дней творения », к появлению людей нового типа, обладающими в нашем понимании «сверхспособностями» — левитов мироздания.

Тетраэдры мироздания: День 10

Наконец, в 10-м Дне творения тетраэдры «вдвигаются» друг в друга в максимальной степени. Их центры совмещаются, и получается замечательная конфигурация, известная как звездчатый октаэдр :

Обновите броузер

Так как это правильный симметричный многогранник, то очевидно, что сфера Шехины (построенная, как на диаметре, на двух противолежащих вершинах Йецер и Ав вэ Лев ) является попросту описанной сферой звездчатого октаэдра. Это значит, что теперь уже абсолютно все категории мироздания оказываются либо на поверхности сферы Шехины (вершины октаэдра), либо внутри (все остальные точки). По сравнению с 7-м Днем, радиус сферы Шехины увеличивается в 2 раза, а объем — в 8 раз. Это максимальное раскрытие Божественного присутствия, максимальный уровень взаимодействия Человека и Бога, при котором осознанный выбор и диалог с Богом позволяет влиять даже на самые фундаментальные основы бытия. Это рождение Человека-Творца десятого Дня творения .

Человек-Творец, Адам Борэ́ , способен в сотрудничестве с Всевышним творить миры, формируя новые варианты Эрец (Неба) и Шамаим (Земли) согласно осознанно разработанным для этих Вселенных законам. Графически это выражено так: точки Йецер и Ав вэ Лев вышли далеко за пределы оснований «встречных» тетраэдров, вершины тетраэдров «прорезали» основания друг друга и сформировали два новых «малых» тетраэдра — потенциальные Шамаим и Эрец нового мира:

Приведем еще раз чертежи тетраэдров для четырех Дней творения 7, 8, 9 и 10, но на этот раз укажем, как расположены ключевые элементы по отношению к сфере Шехины:

  • красным цветом отметим элементы, лежащие вне сферы Шехины (в этих точках человек не может увидеть и почувствовать присутствие Творца);
  • желтым цветом отметим элементы, лежащие на поверхности сферы Шехины (здесь человек может при необходимости, в результате осознанного выбора и диалога с Творцом, увидеть и почувствовать присутствие Творца);
  • зеленым цветом отметим элементы, лежащие внутри сферы Шехины (в этих точках человек всегда видит и чувствует присутствие Творца).

7-й День Творения:

Обновите броузер

8-й День Творения:

Обновите броузер

9-й День Творения:

Обновите броузер

10-й День Творения:

Обновите броузер

В заключение приведем видеоролик, иллюстрирующий последовательное сближение тетраэдров мироздание и раскрытие сферы Шехины:

    Для тех, кто хотел бы точно представить себе геометрию модели, приведем соответствующие математические соотношения.

    Введем декартову систему координат, в которой ось z Ав вэ Лев и Йецер , а плоскость xy будет совпадать с плоскостью нижнего основания нижнего тетраэдра. Обозначим h высоту каждого из тетраэров Эрец и Шамаим . Тогда:

    1. две точки-элемента на каждой из трех сторон нижнего основания тетраэдра Эрец делят эту сторону на три равные части; таким образом, всего на периметре этой грани размещается 9 точек (включая вершины);
    2. точка-элемент на каждой из трех сторон треугольника, получаемого в сечении тетраэда Эрец нижней из двух плоскостей (одна из двух половинок «рассеченной козы» пророчества Авраама), делит эту сторону на две равные части; итого на периметре треугольника находится 6 точек (включая вершины);
    3. нижняя плоскость, пересекающая тетраэдр Эрец и образующая в сечении треугольник с 6 элементами по периметру (одна из двух половинок «рассеченной козы» пророчества Авраама), находится на уровне z = 1 / 3 h (одна треть полной высоты тетраэдра);
    4. вторая плоскость, пересекающая тетраэдр Эрец и образующая в сечении треугольник с 3 элементами на вершинах (одна из двух половинок «рассеченного овна» пророчества Авраама), находится на уровне z = 1 / 2 h (половина полной высоты тетраэдра);
    5. верхняя вершина Йецер тетраэдра Эрец (одна из двух «не рассеченных птиц» пророчества Авраама) находится на уровне z =h (это просто высота тетраэдра, ведь его основанию мы приписали высоту 0);
    6. две точки-элемента на каждом из боковых ребер тетраэда Эрец делят эту сторону на три неравные части в пропорции 3:1:2.

    Из пунктов b и c следует, что малые треугольники, которые мы видим в конфигурации на нижнем основании и в нижней части боковых граней тетраэдра, — равносторонние.

    Верхний тетраэдр Шамаим имеет точно такое же строение и расположен центрально-симметрично относительно тетраэдра Эрец. Внутренняя геометрия каждого тетраэдра постоянна и не меняется на протяжении 7-го, 8-го, 9-го и 10-го Дней творения. Меняется их взаимное положение по оси z . Приведем его для 7-го и 8-го Дней.

    В 7-м Дне творения:

    1. нижняя вершина Ав вэ Лев верхнего тетраэдра Шамаим находится на высоте z = 1 / 4 h ;
    2. следовательно, верхнее основание верхнего тетраэдра Шамаим находится на высоте z = 5 / 4 h (нужно прибавить высоту тетраэдра, равную h ) — расстояние между основаниями тетраэдров равно 5 / 4 h ;
    3. боковые ребра верхнего тетраэдра пересекают стороны 3-элементного треугольника, получаемого в сечении тетраэда Эрец второй (верхней) из двух плоскостей (нижняя половинка «рассеченного овна» пророчества Авраама), и аналогично для боковых ребер нижнего тетраэдра и симметричного треугольника («рассеченного овна») в тетраэдре Шамаим ;
    4. при этом — напоминаем — верхняя вершина Йецер нижнего тетраэдра Эрец находится на высоте z =h ;
    5. следовательно, расстояние между точками Йецер и Ав вэ Лев равно 3 / 4 h ;
    6. следовательно, радиус сферы Шехины равен 3 / 8 h , а ее объем составляет 9 / 128 πh 3 ;
    7. центр правильного тетраэдра, как известно, лежит на его высоте на расстоянии 1 / 4 h от основания, а это значит, что каждая из двух вершин Ав вэ Лев и Йецер лежит в точности в центре противоположного тетраэдра; таким образом, расстояние между центрами тетраэдров тоже равно 3 / 4 h .

    Пункт a можно логически вывести из пункта c , который очевиден из чертежа. Действительно, вторая горизонтальная плоскость, дающая в сечении тетраэдра Эрец 3-элементный треугольник (нижняя половинка «рассеченного овна» пророчества Авраама), в пересечении с верхним тетраэдром Шамаим образует серединный треугольник предыдущего треугольника, следовательно, вдвое меньший, чем он. А поскольку 3-элементный треугольник сам вдвое меньше основания тетраэдра, то серединный треугольник в 4 раза меньше основания, значит, вершина Ав вэ Лев верхнего тетраэдра находится ниже него на 1 / 4 высоты тетраэдра, т.е. на высоте 1 / 2 h − 1 / 4 h = 1 / 4 h .

    В 8-м Дне творения:

    1. нижняя вершина Ав вэ Лев верхнего тетраэдра Шамаим находится на высоте z =0 — она «упирается» в основание тетраэдра Эрец ; аналогично, тетраэдр Эрец достигает своей вершиной Йецер верхнего основания тетраэдра Шамаим ;
    2. соответственно, верхнее основание верхнего тетраэдра Шамаим находится на высоте z =h — расстояние между основаниями тетраэдров равно их высоте (т.е. h );
    3. вторая снизу плоскость сечения, дающая в пересечении с тетраэдром Эрец 3-элементный треугольник («рассеченный овен»), совпадает со второй сверху плоскостью сечения, дающей аналогичный треугольник в пересечении с тетраэдром Шамаим (вторая половинка «рассеченного овна») — они обе находятся на высоте z = 1 / 2 h (две половинки «рассеченного овна» пророчества Авраама совмещаются);
    4. в результате два 3-элементных треугольника сечения нижнего и верхнего тетраэдров накладываются друг на друга, образуя 6-элементную гексаграмму (звезду Давида);
    5. расстояние между точками Йецер и Ав вэ Лев равно h ;
    6. следовательно, радиус сферы Шехины равен 1 / 2 h , а ее объем составляет 1 / 6 πh 3 — то есть «объем Божественного присутствия» по сравнению с 7-м Днем увеличивается в 64 / 27 ≈2.37 раза;
    7. центры тетраэдров лежат теперь на высотах z = 1 / 4 h и z = 3 / 4 h , а расстояние между ними равно 1 / 2 h — по сравнению с 7-м Днем оно сокращается в полтора раза (3 / 2).

    Из чертежей, приведенных далее для 9-го и 10-го Дней творения, легко также увидеть, что расстояние между точками Йецер и Ав вэ Лев (равное диаметру сферы Шехины) равно 7 / 6 h в 9-м Дне и 3 / 2 h в 10-м Дне. Соответствующее увеличение объема сферы по сравнению с 7-м Днем составляет, соответственно, (14 / 9) 3 ≈3.76 и 2 3 =8 раз.

    Расстояние между центрами тетраэдров, конечно, уменьшается настолько же, насколько увеличивается расстояние между вершинами Йецер и Ав вэ Лев , и становится равным 1 / 3 h (9-й День) и 0 (10-й День). Можно заметить, что расстояние между центрами при переходе от 7-го Дня к 8-му и при переходе от 8-го Дня к 9-му сокращается ровно в полтора раза, а при окончательном сближении тетраэдров в 10-м Дне скачкообразно уменьшается до нуля — в «бесконечное» число раз. Этот факт имеет важные следствия, но они выходят за рамки данного рассмотрения.

    Покажем, что в 7-м Дне творения на поверхности сферы Шехины, кроме Йецер и Ав вэ Лев (образующих диаметр сферы), находятся 6 вершин двух «внутренних» треугольников, соответствующих половинкам «рассеченного овна» пророчества Авраама, а также 6 середин сторон двух бо́льших треугольников сечения, соответствующих половинкам «рассеченной козы». Соответственно, все остальные точки находятся за пределами сферы.

    Как и в предыдущем комментарии, введем декартову систему координат, где ось z будет проходить снизу вверх через вершины тетраэдров Ав вэ Лев и Йецер a Эрец и Шамаим h =(2 / 3) 0,5 a

    Обновите броузер

    Пусть O — центр сферы Шехины, J Йецер ABC — верхний (меньший) треугольник сечения. Нам нужно убедиться, что расстояние |OJ | равно расстоянию |OA | (очевидно, |OA |=|OB |=|OC |).

    Пусть d — расстояние от вершины A ABC , иначе говоря, до оси z ; пусть w — расстояние от точки O до этого же центра. Тогда |OA | 2 = d 2 + w 2 .

    Сторона треугольника ABC равна a /2, так что d = a √3 /6. Из предыдущего комментария мы знаем, что плоскость ABC делит высоту тетраэдра пополам, а расстояние |OJ | = 3 / 8 h (радиус сферы). Значит, w = 1 / 8 h .

    Таким образом,

    |OA | 2 = d 2 + w 2 = 3 / 36 a 2 + 1 / 64 · 2 / 3 a 2 = (1 / 12 + 1 / 96) a 2 = 3 / 32 a 2 .

    С другой стороны, |OJ | 2 = 9 / 64 · 2 / 3 a 2 = 3 / 32 a 2 . Итак, |OA = |OB | = |OC | = |OJ |.

    Пусть L , M , N — середины сторон нижнего (большего) треугольника сечения, d" — расстояние от любой из них до центра этого треугольника (он же центр LMN ), то есть до оси z , пусть w" — расстояние от точки O до этого же центра; тогда |OL | 2 = d" 2 + w" 2 . Этот треугольник лежит на 1 / 6 высоты ниже верхнего, так что w" = w + 1 / 6 h = 7 / 3·8 h . Легко также найти d" = a √3 /9.

    Подсчитываем:

    |OL | 2 = d" 2 + w" 2 = 1 / 27 a 2 + 49 / 3²·64 · 2 / 3 a 2 = (1 / 27 + 49 / 27·32) a 2 = 81 / 27·32 a 2 = 3 / 32 a 2 .

    Получилось то же самое, следовательно, |OL = |OM | = |ON | = |OJ |.

    Покажем, что в 8-м Дне творения на поверхности сферы Шехины, кроме Йецер и Ав вэ Лев (образующих диаметр сферы), находятся 6 вершин двух бо́льших треугольников сечения, соответствующих половинкам «рассеченной козы» пророчества Авраама. Соответственно, часть точек (на чертеже ниже они обозначены зеленым цветом) находятся внутри сферы, а часть — за пределами сферы Шехины.

    Как и в предыдущих комментариях, введем декартову систему координат, где ось z будет проходить снизу вверх через вершины тетраэдров Ав вэ Лев и Йецер (и, соответственно, через центры их оснований). Обозначим a длину ребра каждого из тетраэров Эрец и Шамаим ; тогда их высота будет равна h =(2 / 3) 0,5 a . Сосредоточимся на нижнем тетраэдре (для верхнего ситуация в точности аналогична).

    Обновите броузер

    Пусть снова O — центр сферы Шехины, J — верхняя вершина тетраэдра (точка Йецер , лежащая на сфере по определению), ABC — нижний (больший) треугольник сечения. Нам нужно убедиться, что расстояние |OJ | равно расстоянию |OA |.

    Пусть d — расстояние от вершины A до центра треугольника сечения ABC , иначе говоря, до оси z ; пусть w — расстояние от точки O до этого же центра. Тогда |OA | 2 = d 2 + w 2 .

    Сторона треугольника ABC равна 2 / 3 a , так что d = 2a √3 /9. Из предыдущих комментариев мы знаем, что плоскость ABC делит высоту тетраэдра в отношении 1:3, а расстояние |OJ | = 1 / 2 h (радиус сферы). Значит, w = 1 / 6 h .

    Таким образом,

    |OA | 2 = d 2 + w 2 = 4 / 27 a 2 + 1 / 36 · 2 / 3 a 2 = (4 / 27 + 1 / 54) a 2 = 1 / 6 a 2 .

    С другой стороны, |OJ | 2 = 1 / 4 · 2 / 3 a 2 = 1 / 6 a 2 . Итак, |OA = |OB | = |OC | = |OJ |.

    В 9-м Дне творения на поверхности сферы Шехины, кроме Йецер и Ав вэ Лев (образующих диаметр сферы), находятся 12 промежуточных точек на сторонах оснований тетраэдров. Большая часть точек (на чертеже ниже они обозначены зеленым цветом) находятся внутри сферы, и только 6 вершин оснований тетраэдров — за пределами сферы Шехины.

    Обновите броузер

    Вот чертеж для нижнего тетраэдра. Доказательство можно провести точно так же, как и для 7-го и 8-го Дней, учитывая новый диаметр сферы Шехины, равный 7 / 6 h . Предоставляем это читателю в качестве упражнения.