» » Равнобедренный треугольник. Подробная теория с примерами (2020). Является ли равносторонний треугольник равнобедренным? Равнобедренный треугольник с острым основанием

Равнобедренный треугольник. Подробная теория с примерами (2020). Является ли равносторонний треугольник равнобедренным? Равнобедренный треугольник с острым основанием

Равнобедренный треугольник - это треугольник , в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя - основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.

Свойства

  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы , медианы и высоты , проведённые из этих углов.
  • Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
  • Углы, противолежащие равным сторонам, всегда острые (следует из их равенства).

Пусть a - длина двух равных сторон равнобедренного треугольника, b - длина третьей стороны, α и β - соответствующие углы, R - радиус описанной окружности , r - радиус вписанной .

Стороны могут быть найдены следующим образом:

Углы могут быть выражены следующими способами:

Периметр равнобедренного треугольника может быть вычислен любым из следующих способов:

Площадь треугольника может быть вычислена одним из следующих способов:

(формула Герона).

Признаки

  • Два угла треугольника равны.
  • Высота совпадает с медианой.
  • Высота совпадает с биссектрисой.
  • Биссектриса совпадает с медианой.
  • Две высоты равны.
  • Две медианы равны.
  • Две биссектрисы равны (теорема Штейнера - Лемуса).

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Равнобедренный треугольник" в других словарях:

    РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК, ТРЕУГОЛЬНИК, имеющий две равные по длине стороны; углы при этих сторонах также равны … Научно-технический энциклопедический словарь

    И (прост.) трёхугольник, треугольника, муж. 1. Геометрическая фигура, ограниченная тремя взаимно пересекающимися прямыми, образующими три внутренних угла (мат.). Тупоугольный треугольник. Остроугольный треугольник. Прямоугольный треугольник.… … Толковый словарь Ушакова

    РАВНОБЕДРЕННЫЙ, ая, ое: равнобедренный треугольник имеющий две равные стороны. | сущ. равнобедренность, и, жен. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    треугольник - ▲ многоугольник имеющий, три, угол треугольник простейший многоугольник; задается 3 точками, не лежащими на одной прямой. треугольный. остроугольник. остроугольный. прямоугольный треугольник: катет. гипотенуза. равнобедренный треугольник. ▼… … Идеографический словарь русского языка

    треугольник - ТРЕУГОЛЬНИК1, а, м чего или с опр. Предмет, имеющий форму геометрической фигуры, ограниченной тремя пересекающимися прямыми, образующими три внутренних угла. Она перебирала письма мужа пожелтевшие фронтовые треугольники. ТРЕУГОЛЬНИК2, а, м… … Толковый словарь русских существительных

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    Треугольник (многоугольник) - Треугольники: 1 остроугольный, прямоугольный и тупоугольный; 2 правильный (равносторонний) и равнобедренный; 3 биссектрисы; 4 медианы и центр тяжести; 5 высоты; 6 ортоцентр; 7 средняя линия. ТРЕУГОЛЬНИК, многоугольник с 3 сторонами. Иногда под… … Иллюстрированный энциклопедический словарь

    Энциклопедический словарь

    треугольник - а; м. 1) а) Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный треуго/льник. Вычислить площадь треугольника. б) отт. чего или с опр. Фигура или предмет такой формы.… … Словарь многих выражений

    А; м. 1. Геометрическая фигура, ограниченная тремя пересекающимися прямыми, образующими три внутренних угла. Прямоугольный, равнобедренный т. Вычислить площадь треугольника. // чего или с опр. Фигура или предмет такой формы. Т. крыши. Т.… … Энциклопедический словарь

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Тема урока

Равнобедренный треугольник

Цель урока

Познакомить учеников с равнобедренным треугольником;
Продолжать формировать навыки построения прямоугольных треугольников;
Расширить знания школьников о свойствах равнобедренных треугольников;
Закрепить теоретические знания при решении задач.

Задачи урока

Уметь формулировать, доказывать и использовать теорему о свойствах равнобедренного треугольника в процессе решения задач;
Продолжать развитие сознательного восприятия учебного материала, логического мышления, навыков самоконтроля и самооценки;
Вызвать познавательный интерес к урокам математики;
Воспитывать активность, любознательность и организованность.

План урока

1. Общие понятия и определения о равнобедренном треугольнике.
2. Свойства равнобедренного треугольника.
3. Признаки равнобедренного треугольника.
4. Вопросы и задания.

Равнобедренный треугольник

Равнобедренный треугольник - это треугольник, имеющий две равные стороны, которые называются боковыми сторонами равнобедренного треугольника, а его третья сторона называется основанием.

Вершиной данной фигуры есть та, которая расположена напротив его основания.

Угол, который лежит напротив основания называется углом при вершине этого треугольника, а два других угла называются углами при основании равнобедренного треугольника.

Виды равнобедренных треугольников

Равнобедренный треугольник, как и другие фигуры, может иметь разные виды. Среди равнобедренных треугольников встречаются остроугольные, прямоугольные, тупоугольные и равносторонние.

Остроугольный треугольник имеет все острые углы.
У прямоугольного треугольника угол его вершины прямой, а при основании расположены острые углы.
Тупоугольный имеет тупой угол при вершине, а при его основании углы острые.
У равностороннего все его углы и стороны равны.

Свойства равнобедренного треугольника

Противолежащие углы в отношении равных сторон равнобедренного треугольника, равны между собой;

Биссектрисы, медианы и высоты, проведённые из углов, противолежащих равным сторонам треугольника, равны между собой.

Биссектриса, медиана и высота, направлена и проведена к основанию треугольника, совпадают между собой.

Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане, (они совпадают) проведенных к основанию.

Противолежащие равным сторонам равнобедренного треугольника углы, всегда острые.

Данные свойства равнобедренного треугольника применяются при решении задач.

Домашнее задание

1. Дайте определение равнобедренного треугольника.
2. В чем особенность этого треугольника?
3. Чем отличается равнобедренный треугольник от прямоугольного?
4. Назовите известные вам свойства равнобедренного треугольника.
5. Как вы думаете, можно ли на практике проверить равенство углов при основании и как это сделать?

Задание

А теперь давайте проведем небольшой блиц-опрос и узнаем, как вы усвоили новый материал.

Послушайте внимательно вопросы и ответьте верно ли такое утверждение, что:

1. Треугольник можно считать равнобедренным, если у него две стороны равны?
2. Биссектрисой называют отрезок, который соединяет вершину треугольника с серединой противоположной стороны?
3. Биссектрисой является отрезок, который делит угол, который соединяет вершину с точкой противоположной стороны пополам?

Советы относительно решения задач о равнобедренном треугольнике:

1. Для определения периметра равнобедренного треугольника достаточно умножить длину боковой стороны на 2 и сложить это произведение с длиной основы треугольника.
2. Если в задаче известны периметр и длина основы равнобедренного треугольника, то для нахождения длины боковой стороны достаточно отнять длину основы от периметра и найденную разницу разделить на 2.
3. А чтобы найти длину основы равнобедренного треугольника, зная и периметр, и длину боковой стороны, необходимо всего лишь умножить боковую сторону на два и отнять это произведение от периметра нашего треугольника.

Задачи:

1. Среди треугольников на рисунке определите один лишний и объясните свой выбор:



2. Определите, какие из изображенных на рисунке треугольников являются равнобедренными, назовите их основы и боковые стороны, а так же рассчитайте их периметр.



3. Периметр равнобедренного треугольника равен 21 см. Найдите стороны этого треугольника, если одна из них больше на 3 см. Какое количество решений может иметь данная задача?

4. Известно, что если боковая сторона и противолежащий основе угол одного равнобедренного треугольника равен боковой стороне и углу другого, то эти треугольники будут равны. Докажите это утверждение.

5. Подумайте и скажите, является ли любой равнобедренный треугольник равносторонним? И будет ли любой равносторонний треугольник равнобедренным?

6. Если стороны равнобедренного треугольника равны 4 м и 5 м, то каков будет его периметр? Сколько решений может иметь эта задача?

7. Если один из углов равнобедренного треугольника равен 91 градусу, то чему равны остальные углы?

8. Подумайте и ответьте, какие углы должны быть у треугольника, чтобы он одновременно был и прямоугольным, и равнобедренным?

А кто из вас знает, что такое треугольник Паскаля? Задачку на построение треугольника Паскаля часто задают для проверки навыков элементарного программирования. Вообще треугольник Паскаля относиться к комбинаторике и теории вероятности. Так что же это за такой треугольник?

Треугольник Паскаля - это бесконечный арифметический треугольник или таблица в форме треугольника, которая сформирована при помощи биномиальных коэффициентов. Простыми словами, вершиной и сторонами этого треугольника являются единицы, а сам он заполнен суммами двух чисел, которые расположены выше. Складывать такой треугольник можно до бесконечности, но если его очертить, то мы получим равнобедренный треугольник с симметричными строками относительно его вертикальной оси.



Подумайте, а где в повседневной жизни вам приходилось встречать равнобедренные треугольники? Не правда ли, крыши домов и древних архитектурных сооружений очень напоминают их? А вспомните, какая основа у египетских пирамид? Где еще вам встречались равнобедренные треугольники?

Равнобедренные треугольники с древних времен выручали греков и египтян при определении расстояний и высот. Так, например, древние греки определяли с его помощью издалека расстояние до корабля в море. А древние египтяне определяли высоту своих пирамид благодаря длине отбрасываемой тени, т.к. она представляла собой равнобедренный треугольник.

Начиная с древних времен, люди уже тогда оценили красоту и практичность этой фигуры, так как формы треугольников нас окружают всюду. Передвигаясь по разным селениям, мы видим крыши домов и других сооружений, которые напоминают нам о равнобедренном треугольнике, зайдя в магазин, мы нам встречаются пакеты с продуктами и соками треугольной формы и даже некоторые человеческие лица имеют форму треугольника. Эта фигура настолько популярна, что ее можно встретить на каждом шагу.

Предмети > Математика > Математика 7 класс

Равнобедренным является такой треугольник , у которого длины двух его сторон равны между собой.

При решении задач по теме «Равнобедренный треугольник» необходимо пользоваться следующими известными свойствами :

1. Углы, лежащие напротив равных сторон равны между собой.
2.
Биссектрисы, медианы и высоты, проведенные из равных углов, равны между собой.
3.
Биссектриса, медиана и высота, проведенные к основанию равнобедренного треугольника, между собой совпадают.
4.
Центр вписанной и центр описанной окружностей лежат на высоте, а значит и на медиане и биссектрисе, проведенной к основанию.
5.
Углы, которые являются равными в равнобедренном треугольнике всегда острые.

Треугольник является равнобедренным, если у него присутствуют следующие признаки :

1. Два угла у треугольника равны.
2.
Высота совпадает с медианой.
3.
Биссектриса совпадает с медианой.
4.
Высота совпадает с биссектрисой.
5.
Две высоты треугольника равны.
6.
Две биссектрисы треугольника равны.
7.
Две медианы треугольника равны.

Рассмотрим несколько задач по теме «Равнобедренный треугольник» и приведем подробное их решение.

Задача 1.

В равнобедренном треугольнике высота, проведенная к основанию, равна 8, а основание относится к боковой стороне как 6: 5. Найти, на каком расстоянии от вершины треугольника находится точка пересечения его биссектрис.

Решение.

Пусть дан равнобедренный треугольник АВС (рис. 1) .

1) Так как АС: ВС = 6: 5, то АС = 6х и ВС = 5х. ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 6х = 3х.

ВС 2 = ВН 2 + НС 2 ;

(5х) 2 = 8 2 + (3х) 2 ;

х = 2, тогда

АС = 6х = 6 · 2 = 12 и

ВС = 5х = 5 · 2 = 10.

3) Так как точка пересечения биссектрис треугольника является центром вписанной в него окружности, то
ОН = r . Радиус вписанной в треугольник АВС окружности найдем по формуле

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (12 · 8) = 48;

p = 1/2 · (AB + BC + AC); p = 1/2 · (10 + 10 + 12) = 16, тогда ОН = r = 48/16 = 3.

Отсюда ВО = ВН – ОН; ВО = 8 – 3 = 5.

Ответ: 5.

Задача 2.

В равнобедренном треугольнике АВС проведена биссектриса АD. Площади треугольников ABD и ADC равны 10 и 12. Найти увеличенную в три раза площадь квадрата, построенного на высоте этого треугольника, проведенной к основанию АС.

Решение.

Рассмотрим треугольник АВС – равнобедренный, АD – биссектриса угла А (рис. 2).

1) Распишем площади треугольников ВАD и DAC:

S BAD = 1/2 · AB · AD · sin α; S DAC = 1/2 · AC · AD · sin α.

2) Найдем отношение площадей:

S BAD /S DAC = (1/2 · AB · AD · sin α) / (1/2 · AC · AD · sin α) = AB/AC.

Так как S BAD = 10, S DAC = 12, то 10/12 = АВ/АС;

АВ/АС = 5/6, тогда пусть АВ = 5х и АС = 6х.

АН = 1/2 АС = 1/2 · 6х = 3х.

3) Из треугольника АВН – прямоугольного по теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

25х 2 = ВН 2 + 9х 2 ;

4) S A ВС = 1/2 · AС · ВН; S A В C = 1/2 · 6х · 4х = 12х 2 .

Так как S A ВС = S BAD + S DAC = 10 + 12 = 22, тогда 22 = 12х 2 ;

х 2 = 11/6; ВН 2 = 16х 2 = 16 · 11/6 = 1/3 · 8 · 11 = 88/3.

5) Площадь квадрата равна ВН 2 = 88/3; 3 · 88/3 = 88.

Ответ: 88.

Задача 3.

В равнобедренном треугольнике основание равно 4, а боковая сторона равна 8. Найти квадрат высоты, опущенной на боковую сторону.

Решение.

В треугольнике АВС – равнобедренном ВС = 8, АС = 4 (рис. 3).

1) ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 4 = 2.

2) Из треугольника ВНС – прямоугольного по теореме Пифагора ВС 2 = ВН 2 + НС 2 ;

64 = ВН 2 + 4;

3) S ABC = 1/2 · (AC · BH), а так же S ABC = 1/2 · (АМ · ВС), тогда приравняем правые части формул, получим

1/2 · AC · BH = 1/2 · АМ · ВС;

АМ = (AC · BH)/ВС;

АМ = (√60 · 4)/8 = (2√15 · 4)/8 = √15.

Ответ: 15.

Задача 4.

В равнобедренном треугольнике основание и опущенная на него высота, равны 16. Найти радиус описанной около этого треугольника окружности.

Решение.

В треугольнике АВС – равнобедренном основание АС = 16, ВН = 16 – высота, проведенная к основанию АС (рис. 4) .

1) АН = НС = 8 (по свойству равнобедренного треугольника).

2) Из треугольника ВНС – прямоугольного по теореме Пифагора

ВС 2 = ВН 2 + НС 2 ;

ВС 2 = 8 2 + 16 2 = (8 · 2) 2 + 8 2 = 8 2 · 4 + 8 2 = 8 2 · 5;

3) Рассмотрим треугольник АВС: по теореме синусов 2R = AB/sin C, где R – радиус описанной около треугольника АВС окружности.

sin C = BH/BC (из треугольника ВНС по определению синуса).

sin C = 16/(8√5) = 2/√5, тогда 2R = 8√5/(2/√5);

2R = (8√5 · √5)/2; R = 10.

Ответ: 10.

Задача 5.

Длина высоты, проведенной к основанию равнобедренного треугольника, равна 36, а радиус вписанной окружности равен 10. Найти площадь треугольника.

Решение.

Пусть дан равнобедренный треугольник АВС.

1) Так как центр вписанной в треугольник окружности является точкой пересечения его биссектрис, то О ϵ ВН и АО является биссектрисой угла А, а ток же ОН = r = 10 (рис. 5) .

2) ВО = ВН – ОН; ВО = 36 – 10 = 26.

3) Рассмотрим треугольник АВН. По теореме о биссектрисе угла треугольника

АВ/АН = ВО/ОН;

АВ/АН = 26/10 = 13/5, тогда пусть АВ = 13х и АН = 5х.

По теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

(13х) 2 = 36 2 + (5х) 2 ;

169х 2 = 25х 2 + 36 2 ;

144х 2 = (12 · 3) 2 ;

144х 2 = 144 · 9;

х = 3, тогда АС = 2 · АН = 10х = 10 · 3 = 30.

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (36 · 30) = 540;

Ответ: 540.

Задача 6.

В равнобедренном треугольнике две стороны равны 5 и 20. Найти биссектрису угла при основании треугольника.

Решение.

1) Предположим, что боковые стороны треугольника равны 5, а основание – 20.

Тогда 5 + 5 < 20, т.е. такого треугольника не существует. Значит, АВ = ВС = 20, АС = 5 (рис. 6).

2) Пусть LC = x, тогда BL = 20 – x. По теореме о биссектрисе угла треугольника

АВ/АС = ВL/LC;

20/5 = (20 – x)/x,

тогда 4х = 20 – x;

Таким образом, LC = 4; BL = 20 – 4 = 16.

3) Воспользуемся формулой биссектрисы угла треугольника:

AL 2 = AB · AC – BL · LC,

тогда AL 2 = 20 · 5 – 4 · 16 = 36;

Ответ: 6.

Остались вопросы? Не знаете, как решать геометрические задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.