» » Процесс пуассона. Стационарный пуассоновский поток отказов Вопросы для самоконтроля знаний

Процесс пуассона. Стационарный пуассоновский поток отказов Вопросы для самоконтроля знаний

Этот термин используют, как правило, в теории массового обслуживания.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ПУАССОНОВСКИЙ ПОТОК" в других словарях:

    Пуассоновский поток - см. Поток требований (заявок) … Экономико-математический словарь

    То же, что Пуассоновский процесс. Этот термин используют, как правило, в массового обслуживания теории (См. Массового обслуживания теория) … Большая советская энциклопедия

    поток требований - поток заявок входящий поток В теории массового обслуживания последовательность требований или заявок, поступающих на пункт обслуживания (канал, станцию, прибор и т.д.). Они возникают случайно и требуют определенного, обычно заранее точно не… …

    Поток событий последовательность событий, которые наступают в случайные моменты времени. Свойства Свойство стационарности: вероятность появления k событий на любом промежутке времени зависит только от числа k и от длительности t промежутка… … Википедия

    В теории случайных процессов описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью. Содержание 1 Определение 1.1 Простой Пуассоновский процесс … Википедия

    пуассоновский входящий поток - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN exponential arrivals … Справочник технического переводчика

    Случайный процесс X(t).с независимыми приращениями X(t2) X(t1), t2>tl имеющими Пуассона распределение. В однородном П. п. для любых t2 > t1 (1) Коэффициент l>0 наз. интенсивностью пуассоновского процесса X(t). Траектории П. п. X(t).… … Математическая энциклопедия

    Случайный процесс, описывающий моменты наступления 0 Большая советская энциклопедия

    Случайная последовательность моментов времени, в к рые происходят события нек рого потока событий (напр., потока вызовов, приходящих на телефонную станцию), удовлетворяющая условию независимости и одинаковой показательной распределенности… … Математическая энциклопедия

    - (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящие… … Википедия

Основная задача ТСМО заключается в установлении зависимости между характером потока заявок на входе СМО, производительностью одного канала, числом каналов и эффективностью обслуживания.

В качестве критерия эффективности могут быть использованы различные функции и величины:

    • среднее время простоя системы;
    • среднее время ожидания в очереди;
    • закон распределения длительности ожидания требования в очереди;
    • средний % заявок, получивших отказ; и т.д.

Выбор критерия зависит от вида системы. Например, для систем с отказами главной характеристикой является абсолютная пропускная способность СМО; менее важные критерии - число занятых каналов, среднее относительное время простоя одного канала и системы в целом. Для систем без потерь (с неограниченным ожиданием) важнейшим является среднее время простоя в очереди, среднее число требований в очереди, среднее время пребывания требований в системе, коэффициент простоя и коэффициент загрузки обслуживающей системы.

Современная ТСМО является совокупностью аналитических методов исследования перечисленных разновидностей СМО. В дальнейшем из всех достаточно сложных и интересных методов решения задач массового обслуживания будут изложены методы, описываемые в классе марковских процессов типа “гибель и размножение”. Это объясняется тем, что именно эти методы чаще всего используются в практике инженерных расчетов.

2. Математические модели потоков событий.

2.1. Регулярный и случайный потоки.

Одним из центральных вопросов организации СМО является выяснение закономерностей, которым подчиняются моменты поступления в систему требований на обслуживание. Рассмотрим наиболее употребляемые математические модели входных потоков.

Определение: Поток требований называют однородным, если он удовлетворяет условиям:

  1. все заявки потока с точки зрения обслуживания являются равноправными;

вместо требований (событий) потока, которые по своей природе могут быть различными, рассматриваются толь ко моменты их поступления.

Определение: Регулярным называются поток, если события в потоке следуют один за другим через строгие интервалы времени.

Функция f (х) плотности распределения вероятности случайной величины Т – интервала времени между событиями имеет при этом вид:

Где - дельта функция, М т - математическое ожидание, причем М т =Т, дисперсия D т =0 и интенсивность наступления событий в поток =1/M т =1/T.

Определение: Поток называют случайным , если его события происходят в случайные моменты времени.

Случайный поток может быть описан как случайный вектор, который, как известно, может быть задан однозначно законом распределения двумя способами:

Где, zi - значения Ti(i=1,n), В этом случае моменты наступления событий могут быть вычислены следующим образом

t 1 =t 0 +z1

t 2 =t 1 +z2

………,

где, t 0 - момент начала потока.

2.2. Простейший пуассоновский поток.

Для решения большого числа прикладных задач бывает достаточным применить математические модели однородных потоков, удовлетворяющих требованиям стационарности, без последействия и ординарности.

Определение: Поток называется стационарным, если вероятность появления n событий на интервале времени (t,t+T) зависит от его расположения на временной оси t.

Определение: Поток событий называется ординарным, если вероятность появления двух или более событий в течении элементарного интервала времени D t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале, т.е. при n=2,3,…

Определение: Поток событий называетсяпотоком без последствия , если для любых непересекающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий попадающих на другой.

Определение: Если поток удовлетворяет требованиям стационарности, ординарности и без последствия он называется простейшим, пуассоновским потоком.

Доказано, что для простейшего потока число n событий попадающих на любой интервал z распределено по закону Пуассона:

(1)

Вероятность того, что на интервале времени z не появится ни одного события равна:

(2)

тогда вероятность противоположного события:

где по определению P(T это функция распределения вероятности Т. Отсюда получим, что случайная величина Т распределена по показательному закону:

(3)

параметр называют плотностью потока. Причем,

Впервые описание модели простейшего потока появились в работах выдающихся физиков начала века – А. Эйнштейна и Ю.Смолуховского, посвященных броуновскому движению.

2.3. Свойства простейшего пуассоновского потока.

Известны два свойства простейшего потока, которые могут быть использованы при решении практических задач.

2.3.1. Введем величину a= х. В соответствии со свойствами Пуассоновского распределения при оно стремится к нормальному. Поэтому для больших а для вычисления Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону с матожиданием а можно воспользоваться следующим приближенным равенством:

2.3.2. Еще одно свойство простейшего потока связано со следующей теоремой:

Теорема: При показательном распределении интервала времени между требованиями Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон распределения.

Доказательство: пусть Т распределено по показательному закону: Предположим, что промежуток а уже длился некоторое время а< Т. Найдем условный закон распределения оставшейся части промежутка Т 1 =Т-а

F a (x)=P(T-ax)

По теореме умножения вероятностей:

P((T>a)(T-az) P(T-aa)=P(T>a) F a (z).

Отсюда,

равносильно событию а, для которого P(а; с другой стороны

P(T>a)=1-F(a), таким образом

F a (x)=(F(z+a)-F(a))/(1-F(a))

Отсюда, учитывая (3):

Этим свойством обладает только один вид потоков – простейшие пуассоновские.

Среди потоков событий особое место занимает так называемый «пуассоновский поток», обладающий по сравнению с другими, рядом свойств, существенно облегчающих решение задач.

Пуассоновским потоком событий называется поток, обладающий двумя свойствами – ординарностью и отсутствием последствий.

Поток называется потоком без последействия , если для любых двух не перекрывающих участков t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.

Обозначили случайное число событий, наступивших на интервале времени t 1 ,через х 1 и на интервале t 2 , через х 12 . Для потока без последействия случайные величины х 1 и х 2 независимы, т.е. вероятность того, что на участке t 2 наступило определенное число событий m 2 не зависит от того, сколько событий m 1 наступило на участке t 1 .

P (x 2 =m 2 ½x 1 =m 1) = P (x 2 =m ).

(m 1 =0, 1, 2,…)

(m 2 =0, 1, 2,…). (2.47)

Из теории вероятностей известно, что для пуассоновского потока число событий х 1 , попадающих на любой интервал длины t, примыкающих к точке t, распределено по закону Пуассона (рис. 2.5.):

где (а× (t)) m – среднее число событий, наступающих на интервале времени t, примыкающем к моменту времени t . Поэтому поток и называется «пуассоновским».


Среднее число событий для ординарного потока равно интенсивности потока l(t ). Следовательно, среднее число событий наступающих на интервале времени t, примыкающем к моменту времени t будет равно:

Если пуассоновский поток событий является стационарным , то величина а не будет зависеть от t:

В этом случае вероятность того, что на произвольно выбранном участке времени продолжительностью t наступит m событий, определяется по формуле:

Стационарный поток часто называется простейшим потоком, поскольку применение простейших потоков при анализе различных систем массового обслуживания приводит к наиболее простым решениям. Найдем закон распределения интервала времени между двумя событиями в простейшем потоке (рис 2.6.):

Вероятность того, что на участке t , следующем за одним событием не появится не одного события будет:

Но эта вероятность равна вероятности того, что случайные величины Т будут больше величины t . Следовательно,

F (t )=P (T <1)=1 - p ×(T >t )=1 - e - l t , t >0. (2.54)

где F (t ) –функция распределения случайной величины Т .

Дифференцируя это выражение, получим плотность распределения случайной величины Т :



f(t )=le - l t , (t >0). (2.55)

Таким образом, в простейшем потоке интервалы между двумя соседними событиями распределен по доказательному закону с параметром l.

Вследствие отсутствия последействия все интервалы между соседними событиями представляют собой независимые случайные величины. Поэтому простейший поток представляет собой стационарный поток Пальма .

Математическое ожидание и дисперсия случайной величины Т -интервала времени между двумя событиями в простейшем потоке, равны:

Таким образом,

Регулярный поток событий:

где Т* участок, на который упадает случайное событие.

Регулярный поток представляет собой последовательность событий, разделенных строго одинаковыми интервалами.

Плотность распределения интервала между любыми событиями, может быть представлена в виде:

f (t )=d(t-m t ), (2.59)

где d(t ) – известная дельта-функция.

Так как интервал между соседними точками строго постоянен и равен m t , то очевидно математическое ожидание этого интервала равно m t , а D t = 0.

Найдем закон распределения времени Q от случайной точки до наступления очередного события:

Характеристическая функция интервала между соседними событиями в регулярном потоке будет иметь вид:

g (x )= e - imt x. (2.61)

Регулярный поток событий сравнительно редко используется при решении прикладных задач. Это объясняется тем, что такой поток событий обладает очень большим (неограниченным) последействием, так как, зная лишь один момент наступления событий в регулярном потоке, можно восстановить всё прошлое этого потока и предсказать будущее.

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M}