» » Про железо - простым и доступным языком. История металлургии железа Как получить сталь из руды

Про железо - простым и доступным языком. История металлургии железа Как получить сталь из руды

Получение железа из железной руды производится в две стадии. Оно начинается с подготовки руды-измельчения и нагревания. Руду измельчают на куски диаметром не более 10 см. Затем измельченную руду прокаливают для удаления воды и летучих примесей.

На второй стадии железную руду восстанавливают до железа с помощью оксида углерода в доменной печи. Восстановление проводится при температурах порядка 700 °С:

Для повышения выхода железа этот процесс проводится в условиях избытка диоксида углерода СО 2 .

Моноксид углерода СО образуется в доменной печи из кокса и воздуха. Воздух сначала нагревают приблизительно до 600 °С и нагнетают в печь через особую трубу- фурму. Кокс сгорает в горячем сжатом воздухе, образуя диоксид углерода. Эта реакция экзотермична и вызывает повышение температуры выше 1700°С:

Диоксид углерода поднимается вверх в печи и реагирует с новыми порциями кокса, образуя моноксид углерода. Эта реакция эндотермична:

Железо, образующееся при восстановлении руды, загрязнено примесями песка и глинозема (см. выше). Для их удаления в печь добавляют известняк. При температурах, существующих в печи, известняк подвергается термическому разложению с образованием оксида кальция и диоксида углерода:

Оксид кальция соединяется с примесями, образуя шлак. Шлак содержит силикат кальция и алюминат кальция:

Железо плавится при 1540 °С. Расплавленное железо вместе с расплавленным шлаком стекают в нижнюю часть печи. Расплавленный шлак плавает на поверхности расплавленного железа. Периодически из печи выпускают на соответствующем уровне каждый из этих слоев.

Доменная печь работает круглосуточно, в непрерывном режиме. Сырьем для доменного процесса служат железная руда, кокс и известняк. Их постоянно загружают в печь через верхнюю часть. Железо выпускают из печи четыре раза в сутки, через равные промежутки времени. Оно выливается из печи огненным потоком при температуре порядка 1500°С. Доменные печи бывают разной величины и производительности (1000-3000 т в сутки). В США существуют некоторые печи новой конструкции с четырьмя выпускными отверстиями и непрерывным выпуском расплавленного железа. Такие печи имеют производительность до 10000 т в сутки.

Железо, выплавленное в доменной печи, разливают в песочные изложницы. Такое железо называется чугун. Содержание железа в чугуне составляет около 95%. Чугун представляет собой твердое, но хрупкое вещество с температурой плавления около 1200°С.

Литое железо получают, сплавляя смесь чугуна, металлолома и стали с коксом. Расплавленное железо разливают в формы и охлаждают.

Сварочное железо представляет собой наиболее чистую форму технического железа. Его получают, нагревая неочищенное железо с гематитом и известняком в плавильной печи. Это повышает чистоту железа приблизительно до 99,5%. Его температура плавления повышается до 1400 °С. Сварочное железо имеет большую прочность, ковкость и тягучесть. Однако для многих применений его заменяют низкоуглеродистой сталью (см. ниже).

Химические реакции при выплавке чугуна из железной руды

В основе производства чугуна лежит процесс восстановления железа из его окислов окисью углерода.

Известно, что окись углерода можно получить, действуя кислородом воздуха на раскалённый кокс. При этом сначала образуется двуокись углерода, которая при высокой температуре восстанавливается углеродом кокса в окись углерода:

Восстановление железа из окиси железа происходит постепенно. Сначала окись железа восстанавливается до закиси-окиси железа:

и, наконец, из закиси железа восстанавливается железо:

Скорость этих реакций растёт с повышением температуры, с увеличением в руде содержания железа и с уменьшением размеров кусков руды. Поэтому процесс ведут при высоких температурах, а руду предварительно обогащают, измельчают, и куски сортируют по крупности: в кусках одинаковой величины восстановление железа происходит за одно и то же время. Оптимальные размеры кусков руды и кокса от 4 до 8-10 см. Мелкую руду предварительно спекают (агломерируют) путём нагревания до высокой температуры. При этом из руды удаляется большая часть серы.

Железо восстанавливается окисью углерода практически полностью. Одновременно частично восстанавливаются кремний и марганец. Восстановленное железо образует сплав с углеродом кокса. кремнием, марганцем, и соединениями, серы и фосфора. Этот сплав-жидкий чугун. Температура плавления чугуна значительно ниже температуры плавления чистого железа.

Пустая порода и зола топлива также должны быть расплавлены. Для понижения температуры плавления в состав “плавильных” материалов вводят, кроме руды и кокса, флюсы (плавни) - большей частью известняк СаСО 3 и доломит CaCO 3× МgСО 3 . Продукты разложения флюсов при нагревании образуют с веществами, входящими в состав пустой породы и золы кокса, соединения с более низкими температурами плавления, преимущественно силикаты и алюмосиликаты кальция и магния, например, 2CaO×Al 2 O 3× SiO 2 , 2CaO×Mg0×2Si0 2 .

Химический состав сырья, поступающего на переработку, иногда колеблется в широких пределах. Чтобы вести процесс при постоянных и наилучших условиях, сырьё “усредняют” по химическому составу, т. е. смешивают руды различного химического состава в определённых весовых отношениях и получают смеси постоянного состава. Мелкие руды спекают вместе с флюсами, получая “офлюсованный агломерат”. Применение офлюсованного агломерата даёт возможность значительно ускорить процесс.

Производство стали

Стали подразделяются на два типа. Углеродистые стали содержат до 1,5% углерода. Легированные стали содержат не только небольшие количества углерода, но также специально вводимые примеси (добавки) других металлов. Ниже подробно рассматриваются различные типы сталей, их свойства и применения.

Кислородно-конвертерный процесс. В последние десятилетия производство стали революционизировалось в результате разработки кислородно-конвертерного процесса (известного также под названием процесса Линца-Донавица). Этот процесс начал применяться в 1953 г. на сталеплавильных заводах в двух австрийских металлургических центрах-Линце и Донавице.

В кислородно-конвертерном процессе используется кислородный конвертер с основной футеровкой (кладкой). Конвертер загружают в наклонном положении расплавленным чугуном из плавильной печи и металлоломом, затем возвращают в вертикальное положение. После этого в конвертер сверху вводят медную трубку с водяным охлаждением и через нее направляют на поверхность расплавленного железа струю кислорода с примесью порошкообразной извести (СаО). Эта “кислородная продувка”, которая длится 20 мин, приводит к интенсивному окислению примесей железа, причем содержимое конвертера сохраняет жидкое состояние благодаря выделению энергии при реакции окисления. Образующиеся оксиды соединяются с известью и превращаются в шлак. Затем медную трубку выдвигают и конвертер наклоняют, чтобы слить из него шлак. После повторной продувки расплавленную сталь выливают из конвертера (в наклонном положении) в ковш.

Кислородно-конвертерный процесс используется главным образом для получения углеродистых сталей. Он характеризуется большой производительностью. За 40-45 мин в одном конвертере может быть получено 300-350 т стали.

В настоящее время всю сталь в Великобритании и большую часть стали во всем мире получают с помощью этого процесса.

Электросталеплавильный процесс. Электрические печи используют главным образом для превращения стального и чугунного металлолома в высококачественные легированные стали, например в нержавеющую сталь. Электропечь представляет собой круглый глубокий резервуар, выложенный огнеупорным кирпичом. Через открытую крышку печь загружают металлоломом, затем крышку закрывают и через имеющиеся в ней отверстия опускают в печь электроды, пока они не придут в соприкосновение с металлоломом. После этого включают ток. Между электродами возникает дуга, в которой развивается температура выше 3000 °С. При такой температуре металл плавится и образуется новая сталь. Каждая загрузка печи позволяет получить 25-50 т стали.

Сталь получается из чугуна при удалении из него большей части углерода, кремния, марганца, фосфора и серы. Для этого чугун подвергают окислительной плавке. Продукты окисления выделяются в газообразном состоянии и в виде шлака.

Так как концентрация железа в чугуне значительно выше, чем других веществ, то сначала интенсивно окисляется железо. Часть железа переходит в закись железа:

Реакция идёт с выделением тепла.

Закись железа, перемешиваясь с расплавом, окисляет кремний марганец и углерод:

Si+2FeO=SiO 2 +2Fe

Первые две реакции экзотермичны. Особенно много тепла выделяется при окислении кремния.

Фосфор окисляется в фосфорный ангидрид, который образует с окислами металлов соединения, растворимые в шлаке. Но содержание серы снижается незначительно, и поэтому важно чтобы в исходных материалах было мало серы.

После завершения окислительных реакций в жидком сплаве содержится ещё закись железа, от которой его необходимо освободить. Кроме того, необходимо довести до установленных норм содержание в стали углерода, кремния и марганца. Поэтому к концу плавки добавляют восстановители, например ферромарганец (сплав железа с марганцем) и другие так называемые “раскислители”. Марганец реагирует с закисью железа и “сраскисляет” сталь:

Мп+FеО=МnО+Fe

Передел чугуна в сталь осуществляется в настоящее время различными способами. Более старым, применённым впервые в середине XIX в. является способ Бессемера.

Способ Бессемера . По этому способу передел чугуна в сталь проводится путём продувания воздуха через расплавленный горячий чугун. Процесс протекает без затраты топлива за счёт тепла, выделяющегося при экзотермических реакциях окисления кремния, марганца и других элементов.

Процесс проводится в аппарате, который называется по фамилии изобретателя конвертером Бессемера . Он представляет собой грушевидный стальной сосуд, футерованный внутри огнеупорным материалом. В дне конвертера имеются отверстия, через которые подаётся в аппарат воздух. Аппарат работает периодически. Повернув аппарат в горизонтальное положение, заливают чугун и подают воздух. Затем поворачивают аппарат в вертикальное положение. В начале процесса окисляются железо, кремний и марганец, затем углерод. Образующаяся окись углерода сгорает над конвертером ослепительно ярким пламенем длиной до 8 л. Пламя постепенно сменяется бурым дымом. Начинается горение железа. Это указывает, что период интенсивного окисления углерода заканчивается. Тогда подачу воздуха прекращают, переводят конвертер в горизонтальное положение и вносят раскислители.

Процесс Бессемера обладает рядом достоинств. Он протекает очень быстро (в течение 15 минут), поэтому производительность аппарата велика. Для проведения процесса не требуется расходовать топливо или электрическую энергию. Но этим способом можно переделывать в сталь не все, а только отдельные сорта чугуна. К тому же значительное количество железа в бессемеровском процессе окисляется и теряется (велик “угар” железа).

Значительным усовершенствованием в производстве стали в конвертерах Бессемера является применение для продувкя вместо воздуха смеси его с чистым кислородом (“обогащённого воздуха”), что позволяет получать стали более высокого качества.

Мартеновский способ. Основным способом передела чугуна в сталь является в настоящее время мартеновский. Тепло, необходимое для проведения процесса, получается посредством сжигания газообразного или жидкого топлива. Процесс получения стали осуществляется в пламенной печи – мартеновской печи.

Плавильное пространство мартеновской печи представляет собой ванну, перекрытую сводом из огнеупорного кирпича. В передней стенке печи находятся загрузочные окна, через которые завалочные машины загружают в печь шихту. В задней стенке находится отверстие для выпуска стали. С обеих сторон ванны расположены головки с каналами для подвода топлива и воздуха и отвода продуктов горения. Печь ёмкостью 350 т имеет длину 25 м и ширину 7 м.

Мартеновская печь работает периодически. После выпуска стали в горячую печь загружают в установленной последовательности лом, железную руду, чугун, а в качестве флюса - известняк или известь. Шихта плавится. При этом интенсивно окисляются: часть железа, кремний и марганец. Затем начинается период быстрого окисления углерода, называемый периодом “кипения”, - движение пузырьков окиси углерода через слой расплавленного металла создаёт впечатление, что он кипит.

В конце процесса добавляют раскислители. За изменением состава сплава тщательно следят, руководствуясь данными экспресс-анализа, позволяющего дать ответ о составе стали в течение нескольких минут. Готовую сталь выливают в ковши. Для повышения температуры пламени газообразное топливо и воздух предварительно подогревают в регенераторах. Принцип действия регенераторов тот же, что и воздухонагревателей доменного производства. Насадка регенератора нагревается отходящими из печи газами, и когда она достаточно нагреется, через регенератор начинают подавать в печь воздух. В это время нагревается другой регенератор. Для регулирования теплового режима печь снабжается автоматическими приспособлениями.

В мартеновской печи, в отличие от конвертера Бессемера, можно перерабатывать не только жидкий чугун, но и твёрдый, а также отходы металлообрабатывающей промышленности и стальной лом. В шихту вводят также и железную руду. Состав шихты можно изменять в широких пределах и выплавлять стали разнообразного состава, как углеродистые, так и легированные.

Российскими учёными и сталеварами разработаны методы скоростного сталеварения, повышающие производительность печей. Производительность печей выражается количеством стали, получаемым с одного квадратного метра площади пода печи в единицу времени.

Производство стали в электропечах. Применение электрической энергии в производстве стали даёт возможность достигать более высокой температуры и точнее её регулировать. Поэтому в электропечах выплавляют любые марки сталей, в том числе содержащие тугоплавкие металлы - вольфрам, молибден и др. Потери легирующих элементов в электропечах меньше, чем в других печах. При плавке с кислородом ускоряется плавление шихты и особенно окисление углерода в жидкой шихте, Применение кислорода позволяет ещё более повысить качество электростали, так как в ней остаётся меньше растворённых газов и неметаллических включений.

В промышленности применяют два типа электропечей: дуговые и индукционные. В дуговых печах тепло получается вследствие образования электрической дуги между электродами и шихтой. В индукционных печах тепло получается за счёт индуцируемого в металле электрического тока.

Сталеплавильные печи всех типов - бессемеровские конвертеры, мартеновские и электрические - представляют собой аппараты периодического действия. К недостаткам периодических процессов относятся, как известно, затрата времени на загрузку и разгрузку аппаратов, необходимость изменять условия по мере течения процесса, трудность регулирования и др. Поэтому перед металлургами стоит задача создания нового непрерывного процесса.

Применения в качестве конструкционных материалов сплавов железа.

Некоторые d-элементы широко используются для изготовления конструкционных материалов, главным образом в виде сплавов. Сплав-это смесь (или раствор) какого-либо металла с одним или несколькими другими элементами.

Сплавы, главной составной частью которых служит железо, называются сталями. Выше мы уже говорили, что все стали подразделяются на два типа: углеродистые и легированные.

Углеродистые стали. По содержанию углерода эти стали в свою очередь подразделяются на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую стали. Твердость углеродистых сталей возрастает с повышением содержания углерода. Например, низкоуглеродистая сталь является тягучей и ковкой. Ее используют в тех случаях, когда механическая нагрузка не имеет решающего значения. Различные применения углеродистых сталей указаны в таблице. На долю углеродистых сталей приходится до 90% всего объема производства стали.

Легированные стали. Такие стали содержат до 50% примеси одного или нескольких металлов, чаще всего алюминия, хрома, кобальта, молибдена, никеля, титана, вольфрама и ванадия.

Нержавеющие стали содержат в качестве примесей к железу хром и никель. Эти примеси повышают твердость стали и делают ее устойчивой к коррозии. Последнее свойство обусловлено образованием тонкого слоя оксида хрома (III) на поверхности стали.

Инструментальные стали подразделяются на вольфрамовые и марганцовистые. Добавление этих металлов повышает твердость, прочность и устойчивость при высоких температурах (жаропрочность) стали. Такие стали используются для бурения скважин, изготовления режущих кромок металлообрабатывающих инструментов и тех деталей машин, которые подвергаются большой механической нагрузке.

Кремнистые стали используются для изготовления различного электрооборудования: моторов, электрогенераторов и трансформаторов.

Процессы прямого получения железа из руд

Под процессами прямого получения железа понимают такие химические, электрохимические или химико-термические процессы, которые дают возможность получать непосредственно из руды, минуя доменную печь, металлическое железо в виде губки, крицы или жидкого металла.

Такие процессы ведутся, не расходуя металлургический кокс, флюсы, электроэнергию (на подготовку сжатого воздуха), а также позволяют получить очень чистый металл.

Методы прямого получения железа известны давно. Опробовано более 70 различных способов, но лишь немногие осуществлены и притом в небольшом промышленном масштабе.

В последние годы интерес к этой проблеме вырос, что связано, помимо замены кокса другим топливом, с развитием способов глубокого обогащения руд, обеспечивающих не только высокого содержания железа в концентратах (70…72%), но и почти полное освобождение его от серы и фосфора.

Получение губчатого железа в шахтных печах.

Схема процесса представлена на рис. 2.1.

Рис. 2.1. Схема установки для прямого восстановления железа из руд и получения металлизованных окатышей

При получении губчатого железа добытую руду обогащают и получают окатыши. Окатыши из бункера 1 по грохоту 2поступают в короб 10 шихтозавалочной машины и оттуда в шахтную печь 9 , работающую по принципу противотока. Просыпь от окатышей попадает в бункер 3 с брикетировочным прессом и в виде окатышей вновь поступает на грохот 2. Для восстановления железа из окатышей в печь по трубопроводу 8 подают смесь природного и доменного газов, подвергнутую в установке 7конверсии, в результате которой смесь разлагается на водород и оксид углерода . В восстановительной зоне печи Всоздается температура 1000…1100 0 C, при которой и восстанавливают железную руду в окатышах до твёрдого губчатого железа. Содержание железа в окатышах достигает 90…95%. Для охлаждения железных окатышей по трубопроводу 6 в зону охлаждения 0 печи подают воздух. Охлаждённые окатыши 5 выдаются на конвейер 4 и поступают на выплавку стали в электропечах.

Восстановление железа в кипящем слое.

Мелкозернистую руду или концентрат помещают на решётку, через которую подают водород или другой восстановительный газ под давлением 1,5 МПа. Под давлением водорода частицы руды находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий», «псевдосжиженый» слой. В кипящем слое обеспечивается хороший контакт газа-восстановителя с частицами оксидов железа. На одну тонну восстановленного порошка расход водорода составляет 600…650 м 3 .

Получение губчатого железа в капсулах-тиглях.

Используют карбидокремниевые капсулы диаметром 500 мм и высотой 1500 мм. Шихта загружается концентрическими слоями. Внутренняя часть капсулы заполнена восстановителем – измельч¨нным тв¨рдым топливом и известняком (10…15%) для удаления серы. Второй слой – восстанавливаемая измельч¨нная руда или концентрат, окалина, затем еще один концентрический слой – восстановителя и известняка. Установленные на вагонетки капсулы медленно перемещаются в туннельной печи длиной до 140 м, где происходит нагрев, выдержка при 1200 0 C и охлаждение в течение 100 часов.

Восстановленное железо получают в виде толстостенных труб, их чистят, дробят и измельчают, получая железный порошок с содержанием железа до 99 %, углерода – 0,1…0,2%.

Производство стали

Сущность процесса

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап).

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла.

Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора.

Наиболее важная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит . Фосфорный ангидрид образует с оксидом железа нестойкое соединение . Оксид кальция – более сильное основание, чем оксид железа, поэтому при невысоких температурах связывает и переводит его в шлак:

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке . Для повышения содержания в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками .

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объ¨му ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам , а также газы, проникающие в пузырьки . Вс¨ это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали.

Также создаются условия для удаления серы. Сера в стали находится в виде сульфида (), который растворяется также в основном шлаке. Чем выше температура, тем большее количество сульфида железа растворяется в шлаке и взаимодействует с оксидом кальция :

Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.

Сталь раскисляют двумя способами: осаждающим и диффузионным.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

В результате раскисления восстанавливается железо и образуются оксиды: , которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали:

а) спокойные,

б) кипящие,

в) полуспокойные.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскислена в печи неполностью. Ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода: ,

Образующийся оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода, газы выделяются в виде пузырьков, вызывая её кипение. Кипящая сталь не содержит неметаллических включений, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Способы выплавки стали

Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.

Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное

топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11, а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

Рис.2.2. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажд¨нные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

В зависимости от состава шихты, используемой при плавке, различают разновидности мартеновского процесса:

– скрап-процесс, при котором шихта состоит из стального лома (скрапа) и 25…45 % чушкового передельного чугуна, процесс применяют на заводах, где нет доменных печей, но много металлолома.

– скрап-рудный процесс, при котором шихта состоит из жидкого чугуна (55…75 %), скрапа и железной руды, процесс применяют на металлургических заводах, имеющих доменные печи.

Футеровка печи может быть основной и кислой. Если в процессе плавки стали, в шлаке преобладают основные оксиды, то процесс называют основным мартеновским процессом, а если кислые – кислым .

Наибольшее количество стали производят скрап-рудным процессом в мартеновских печах с основной футеровкой.

В печь загружают железную руду и известняк, а после подогрева подают скрап. После разогрева скрапа в печь заливают жидкий чугун. В период плавления за счет оксидов руды и скрапа интенсивно окисляются примеси чугуна: кремний, фосфор, марганец и, частично, углерод. Оксиды образуют шлак с высоким содержанием оксидов железа и марганца (железистый шлак). После этого проводят период «кипения» ванны: в печь загружают железную руду и продувают ванну подаваемым по трубам 3 кислородом. В это время отключают подачу в печь топлива и воздуха и удаляют шлак.

Для удаления серы наводят новый шлак, подавая на зеркало металла известь с добавлением боксита для уменьшения вязкости шлака. Содержание в шлаке возрастает, а уменьшается.

В период «кипения» углерод интенсивно окисляется, поэтому шихта должна содержать избыток углерода. На данном этапе металл доводится до заданного химического состава, из него удаляются газы и неметаллические включения.

Затем проводят раскисление металла в два этапа. Сначала раскисление идет путем окисления углерода металла, при одновременной подаче в ванну раскислителей – ферромарганца, ферросилиция, алюминия. Окончательное раскисление алюминием и ферросилицием осуществляется в ковше, при выпуске стали из печи. После отбора контрольных проб сталь выпускают в ковш.

В основных мартеновских печах выплавляют стали углеродистые конструкционные, низко- и среднелегированные (марганцовистые, хромистые), кроме высоколегированных сталей и сплавов, которые получают в плавильных электропечах.

В кислых мартеновских печах выплавляют качественные стали. Применяют шихту с низким содержанием серы и фосфора.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

· производительность печи – съ¨м стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ; р

· расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

Производство стали в кислородных конвертерах.

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Вместимость конвертера – 130…350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит и плавиковый шпат для разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

Рис.2.3. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0 C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Растворенный кислород окисляет кремний, марганец, углерод в металле, и их содержание падает. Происходит разогрев металла теплотой, выделяющейся при окислении.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 2.3.г), где раскисляют осаждающим методом ферромарганцем, ферросилицием и алюминием, затем сливают шлак (рис. 2.3.д).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Железную руду получают привычным способом: открытой или подземной добычей и последующей транспортировкой для первоначальной подготовки, где материал измельчается, промывается и перерабатывается.

Руду засыпают в доменную печь и подвергают струйной обработке горячим воздухом и теплом, который превращает ее в расплавленное железо. Далее оно извлекается из нижней части печи в формы, известные как свиньи, где происходит остывание для получения чугуна. Он превращается в кованое железо или перерабатывается в сталь несколькими способами.

Что такое сталь?

Вначале было железо. Оно является одним из Его можно встретить почти везде, в сочетании со многими другими элементами, в виде руды. В Европе начало работы с железом датируется 1700 г. до н.э.

В 1786 году французские ученые Бертолле, Мондж и Вандермонде точно определили, что разница между железом, чугуном и сталью обусловлена различным содержанием углерода. Тем не менее сталь, изготовленная из железа, быстро стала самым важным металлом промышленной революции. В начале XX века мировое производство стали составило 28 миллионов тонн - это в шесть раз больше, чем в 1880 году. К началу Первой мировой войны ее производство составляло 85 миллионов тонн. В течение нескольких десятилетий она практически заменила железо.

В настоящее время существует более 3000 каталогизированных марок (химических составов), не считая тех, которые созданы для удовлетворения индивидуальных потребностей. Все они способствуют превращению стали в наиболее подходящий материал для решения задач будущего.

Сырье для выплавки стали: первичное и вторичное

Выплавка данного металла с использованием многих компонентов - самый распространенный способ добычи. Шихтовые материалы могут быть как первично используемые, так и вторично. Основной состав шихты, как правило, составляет 55 % чугуна и 45 % оставшегося металлолома. Ферросплавы, переделанный чугун и технически чистые металлы используются как основной элемент сплава, ко вторичным, как правило, относят все виды черного металла.

Железная руда является самым важным и основным сырьем в черной металлургии. Для производства тонны чугуна требуется около 1,5 тонны этого материала. Для производства одной тонны чугуна используется около 450 тонн кокса. Многие металлургические заводы применяют даже

Вода - важное сырье для черной металлургии. Она в основном используется для закалки кокса, охлаждения доменных печей, производства пара в дверях работы гидравлического оборудования и удаления сточных вод. Для производства тонны стали требуется около 4 тонн воздуха. Флюс используется в доменной печи для извлечения загрязнений из плавильной руды. Известняк и доломит объединяются с экстрагированными примесями с образованием шлака.

Как дутьевые, так и стальные печи, облицованы огнеупорами. Они используются для облицовочных печей, предназначенных для плавки железной руды. Диоксид кремния или песок используется для формования. Для производства стали различных марок применяют алюминий, хром, кобальт, медь, свинец, марганец, молибден, никель, олово, вольфрам, цинк, ванадий и др. Среди всех этих ферросплавов марганец широко используется в выплавке стали.

Железные отходы, полученные из демонтированных конструкций заводов, механизмов, старых транспортных средств и т. д., перерабатываются и широко используются в этой отрасли.

Чугун для стали

Выплавку стали с использованием чугуна производят гораздо чаще, чем с другими материалами. Чугун - это термин, который обычно относится к серому железу, однако он также идентифицирован с большой группой ферросплавов. Углерод составляет примерно от 2,1 до 4 мас.%, тогда как кремний составляет обычно от 1 до 3 мас.% в сплаве.

Выплавка чугуна и стали проходит при температуре плавления между 1150 и 1200 градусов, что примерно на 300 градусов ниже, чем температура плавления чистого железа. Чугун также демонстрирует хорошую текучесть, отличную обрабатываемость, устойчивость к деформации, окислению и отливке.

Сталь также является сплавом железа с переменным содержанием углерода. Содержание углерода в стали составляет от 0,2 до 2,1 мас.%, И это наиболее экономичный легирующий материал для железа. Выплавка стали из чугуна полезна для различных инженерных и конструкционных целей.

Железная руда для стали

Процесс выплавки стали начинается с переработки железной руды. Породу, содержащую железную руду, измельчают. Руду добывают с использованием магнитных роликов. Мелкозернистая железная руда перерабатывается в крупнозернистые комки для использования в доменной печи. Уголь очищается от примесей в что дает почти чистую форму углерода. Затем смесь железной руды и угля нагревают для получения расплавленного железа или чугуна, из которого производится сталь.

В основной кислородной печи расплавленная железная руда является основным сырьем и смешивается с различными количествами стального лома и сплавов для производства различных марок стали. В электродуговой печи переработанный стальной лом расплавляется непосредственно в новую сталь. Около 12% стали изготовлено из переработанного материала.

Технология выплавки

Плавление - процесс, посредством которого металл получают либо в виде элемента, либо как простое соединение из его руды путем нагревания выше температуры плавления обычно в присутствии окислителей, таких как воздух, или восстановителей, таких как кокс.

В технологии выплавки стали металл, который сочетается с кислородом, например оксидом железа, нагревается до высокой температуры, и оксид образуется в сочетании с углеродом в топливе, выходящим как монооксид углерода или диоксид углерода.
Другие примеси, все вместе называемые жилами, удаляются добавлением потока, с которым они объединяются, образуя шлак.

В современных плавках стали используется отражательная печь. Концентрированная руда и поток (обычно известняк) загружаются в верхнюю часть, а расплавленный штейн (соединение меди, железа, серы и шлака) вытягивается снизу. Вторая термообработка в конвертерной печи необходима для удаления железа из матовой поверхности.

Кислородно-конвекторный способ

Кислородно-конвертерный процесс является ведущим процессом сталеплавильного производства в мире. Мировое производство конвертерной стали в 2003 году составило 964,8 млн тонн или 63,3 % от общего производства. Производство конвертера является источником загрязнения окружающей природной среды. Основными проблемами этого являются снижение выбросов, сбросов и уменьшение отходов. Суть их заключается в использовании вторичных энергетических и материальных ресурсов.

Экзотермическое тепло генерируется реакциями окисления во время продувки.

Основной процесс выплавки стали с использованием собственных запасов:

  • Расплавленный чугун (иногда называемый горячим металлом) из доменной печи выливается в большой огнеупорный футерованный контейнер, называемый ковшом.
  • Металл в ковше направляется непосредственно для основного производства стали или стадии предварительной обработки.
  • Высокочистый кислород под давлением 700-1000 килопаскалей вводится со сверхзвуковой скоростью на поверхность ванны железа через охлаждаемую водой фурму, которая подвешена в сосуде и удерживается в нескольких футах над ванной.

Решение о предварительной обработке зависит от качества горячего металла и требуемого конечного качества стали. Самые первые конвертеры со съемным дном, которые могут быть отсоединены и отремонтированы, все еще используются. Были изменены копья, используемые для дутья. Для предотвращения заклинивания фурмы во время продувки применялись щелевые манжеты с длинным сужающимся медным наконечником. Кончики наконечника после сгорания сжигают CO, образующийся при выдувании в CO 2 , и обеспечивают дополнительное тепло. Для отвода шлака используются дротики, огнеупорные шарики и шлаковые детекторы.

Кислородно-конвекторный способ: достоинства и недостатки

Не требует затрат на оборудование по очищению от газа, так как пылеобразование, т. е. испарение железа, снижено в 3 раза. За счет снижения выхода железа наблюдается рост выхода жидкой стали в 1,5 - 2,5 %. Преимуществом стало и то, что интенсивность продувки в таком способе увеличивается, что дает возможность повысить производительности конвертера на 18 %. Качество стали выше, потому что температура в зоне продувки снижена, что приводит к уменьшению образования азота.

Недостатки данного способа выплавки стали привели к снижению спроса на потребление, так как повышается уровень потребления кислорода на 7 % из-за большого расхода на сжигание топлива. Наблюдается повышенное содержание водорода в переработанном металле, из-за чего приходится некоторое время после окончания процесса вести продувку при помощи кислорода. Среди всех способов кислородно-конвертерный обладает самым повышенным шлакообразованием, причиной является невозможность следить за процессом окисления внутри оборудования.

Мартеновский способ

Мартеновский способ на протяжении большей части 20-го века составлял основную часть обработки всей стали, изготовленной в мире. Уильям Сименс в 1860-х годах искал средства повышения температуры в металлургической печи, воскресив старое предложение об использовании отработанного тепла, выделяемого печью. Он нагревал кирпич до высокой температуры, затем использовал тот же путь для ввода воздуха в печь. Предварительно нагретый воздух значительно увеличивал температуру пламени.

Природный газ или распыленные тяжелые масла используются в качестве топлива; воздух и топливо нагреваются до сгорания. Печь загружается жидким доменным чугуном и стальным ломом вместе с железной рудой, известняком, доломитом и флюсами.

Сама печь изготовлена из высокоогнеупорных материалов, таких как магнезитовый кирпич для очагов. Вес мартеновских печей достигает 600 тонн, и их обычно устанавливают группами, так что массивное вспомогательное оборудование, необходимое для зарядки печей и обработки жидкой стали, может быть эффективно использовано.

Хотя мартеновский процесс практически полностью заменен в большинстве промышленно развитых стран основным кислородным процессом и электродуговой печью, им изготавливают около 1/6 всей стали, произведенной во всем мире.

Достоинства и недостатки данного способа

К преимуществам относят простоту использования и легкость в получении легированной стали с примесью различных добавок, которые придают материалу различные специализированные свойства. Необходимые добавки и сплавы добавляют непосредственно перед окончанием выплавки.

К недостаткам можно отнести сниженную экономичность, по сравнению с кислородно-конверторным способом. Также качество стали более низкое, по сравнению с остальными методами выплавки металла.

Электросталеплавильный способ

Современный способ выплавки стали с использованием собственных запасов представляет собой печь, которая нагревает заряженный материал с помощью электрической дуги. Промышленные дуговые печи имеют размеры от небольших единиц грузоподъемностью около одной тонны (используются в литейных цехах для производства чугунных изделий) до 400 тонн единиц, применяемых для вторичной металлургии.

Дуговые печи, используемые в исследовательских лабораториях, могут иметь емкость всего несколько десятков граммов. Промышленные температуры электрической дуговой печи могут составлять до 1800 °C (3,272 °F), в то время как лабораторные установки могут превышать 3000 °C (5432 °F).

Дуговые печи отличаются от индукционных тем, что зарядный материал непосредственно подвергается воздействию электрической дуги, а ток в выводах проходит через заряженный материал. Электрическая дуговая печь используется для производства стали, состоит из огнеупорной футеровки, обычно водоохлаждаемой, больших размеров, покрыта раздвижной крышей.

Печь в основном разделена на три секции:

  • Оболочка, состоящая из боковых стенок и нижней стальной чаши.
  • Очаг состоит из огнеупора, который вытягивает нижнюю чашу.
  • Крыша с огнеупорной футеровкой или водяным охлаждением может быть выполнена в виде секции шара или в виде усеченного конуса (коническая секция).

Достоинства и недостатки способа

Данный способ занимает лидирующие позиции в области производства стали. Метод выплавки стали применяется для создания высококачественного металла, который либо совсем лишен, либо содержит незначительное количество нежелательных примесей, таких как сера, фосфор и кислород.

Главным плюсом метода является для нагревания, благодаря чему можно легко контролировать температуру плавления и достичь невероятной скорости нагревания металла. Автоматизированная работа станет приятным дополнением к прекрасной возможности качественной переработки различного металлического лома.

К недостаткам можно отнести большое энергопотребление.

История металлургии железа

Железо... Недра нашей планеты богаты этим металлом, который по праву называют «фундаментом цивилизации». Словно для того чтобы не расставаться со своими сокровищами, природа, прочно связав железо с другими элементами (главным образом с кислородом), спрятала его в разнообразных рудных минералах. Но уже в глубокой древности - во втором тысячелетии до нашей эры - человек научился извлекать нужный ему металл.

В историческом плане производство черных металлов развивалось по следующим этапам:

    Сыродутный процесс (1500 лет до н. э.). Производительность процесса очень низкая, получали за 1 час всего до 0,5… 0,6 кг железа. В кузнечных горнах железо восстанавливалось из руды углём при продувке воздухом с помощью кузнечных мехов. Сначала при горении древесного угля образовывалась окись углерода, которая и восстанавливала чистое железо из руды.

В результате длительной продувки воздухом из кусочков руды получались практически без примесей кусочки чистого железа, которые сваривались между собой кузнечным способом в полосу, которые далее использовались для производства необходимых человеку изделий. Это технически чистое железо содержало очень мало углерода и мало примесей (чистый древесный уголь и хорошая руда), поэтому оно хорошо ковалось и сваривалось и практически не корродировало. Процесс шел при относительно невысокой температуре (до 1100…1350 o С), металл не плавился, т. е. восстановление металла шло в твердой фазе. В результате получалось ковкое (кричное) железо. Просуществовал этот способ до XIV века, а в несколько усовершенствованном виде до начала XX века, но был постепенно вытеснен кричным переделом.

Отсюда следует, что исторически самым первым сварщиком металлов был кузнец, а самый первый способ сварки - это кузнечная сварка.

    С увеличением размеров сыродутных горнов и интенсификацией процесса возрастало содержание углерода в железе, температура плавления этого сплава (чугуна) оказывалась ниже, чем у более чистого железа и получалась часть металла в виде расплавленного чугуна, который как отход производства вытекал из горна вместе со шлаком. В XIV век в Европе был разработан двухступенчатый способ получения железа (маленькая домна, далее кричной процесс). Производительность увеличилась до 40 …50 кг/час железа. Использовалось водяное колесо для подачи воздуха. Кричный передел - это процесс рафинирования чугуна (снижение количества C, Si, Mn) с целью получения из чугуна кричного (сварочного) железа.

    В конце XVIII века в Европе начали использовать минеральное топливо в доменном процессе и в пудлинговом процессе . При пудлинговом процессе каменный уголь сгорает в топке, газ проходит через ванну, расплавляет и очищает металл. В Китае даже раньше, в X-ом веке, выплавляли чугун, а далее получали сталь процессом пудлингования. Пудлингование- это очистка чугуна в пламенной печи. При очистке железные зерна собираются в комья. Пудлиновщик ломом много раз переворачивает массу и делит ее на 3…5 частей – криц. В кузнице или прокатной машине свариваются зерна и получают полосы и другие заготовки. Используются уже паровые машины вместо водяного колеса. Производительность возрастает до 140 кг сварочного железа в час.

    В конце XIX века - почти одновременно внедряются три новых процесса получения стали: бессемеровский, мартеновский и томасовский. Производительность плавки стали возрастает резко (до 6 тн/час).

    В середине XX века: внедряются кислородное дутье, автоматизация процесса и непрерывная разливка стали.

    При сыродутном, кричном и пудлинговом процессах железо не плавилось (технический уровень того времени не давал возможность обеспечить температуру его плавления). Продувка кислородом расплавленного металла в бессемеровском конверторе из-за резкого увеличения поверхности соприкосновения металла с окислителем (кислородом) в тысячу раз ускоряет химические реакции по сравнению с пудлинговой печью.

    В сыродутном и кричном процессах получали одностадийным методом ковкое, сварочное железо (малоуглеродистую сталь), причём имеющее небольшое количество примесей, поэтому весьма стойкое к коррозии. Сейчас в стадии развития находится одностадийный процесс производства стали: обогащение руд (получение окатышей, содержащих 90… 95 % железа) и выплавка стали в электропечи.

Вся история металлургии железа, со времени появления первых плавильных, ям вплоть до наших дней,-это непрекращающееся совершенствование способов его получения. Несколько столетий назад появилась доменная печь - высокопроизводительный агрегат, в котором железная руда превращается в чугун - исходный продукт для выплавки стали. С. той пори доменный процесс стал основным звеном технологии производства стали.

Процесс извлечения железа из руды в горне вошел в историю металлургии под названием «сыродутный», поскольку в горн вдувался неподогретый - сырой - воздух (горячее дутье появилось на металлургических заводах лишь в XIX веке). Получавшееся в сыродутном горне железо порой оказывалось недостаточно прочным и твердым, а изделия из него - ножи, топоры, копья - недолго оставались острыми, гнулись, быстро выходили из строя.

На дне горна наряду со сравнительно мягкими комками железа попадались и более твердые - те, что вплотную соприкасались с древесным углем. Подметив эту закономерность, человек начал сознательно увеличивать зону контакта с углем и тем самым науглероживать железо. Теперь металл уже мог удовлетворить самого взыскательного мастера. Это была сталь - важнейший сплав железа, который и по сей день служит основным конструкционным материалом.

Спрос на сталь всегда и почти повсеместно опережал ее производство, а примитивная металлургическая техника долго отставала от требований жизни. Как ни удивительно, но на протяжении почти трех тысячелетий металлургия железа никаких принципиальных изменений не претерпела - в основе получения железа и стали лежал все тот же сыродутный процесс. Правда, постепенно увеличивались размеры горнов, совершенствовалась их форма, повышалась мощность дутья, но технология оставалась малопроизводительной.

В средние века сыродутный горн обрел вид шахтной печи, достигавшей в высоту нескольких метров. В России эти печи называли домницами - от древнерусского слова «дмение», означавшего «дутье». В них загружалось уже солидное количество шихтовых материалов - железной руды и древесного угля, да и воздуха требовалось во много раз больше, чем для примитивных сыродутных горнов. Теперь печи «дышали» с помощью энергии воды: воздуходувные мехи приводились в движение сначала специальными водяными трубами, а позже огромными водяными колесами.

В шахтной печи в единицу времени сгорало больше топлива, чем в горне и, естественно, больше выделялось тепла. Именно высокие температуры в печи и привели к тому, что часть восстановленного железа, освободившегося от кислорода, но зато сильно насыщенного углеродом, расплавлялась и вытекала из печи. Застывая, такой железоуглеродистый сплав, содержащий в несколько раз больше углерода, чем сталь, становился очень твердым, но и очень хрупким. Это был чугун .

Роль его в развитии металлургии очень важна, но несколько столетий назад мастера железных дел придерживались совсем иного мнения; ведь под ударами молота такой металл разлетался на куски, и сделать из него оружие или инструмент было просто невозможно. В то же время из-за этого ни на что не пригодного сплава количество добротного продукта - железной крицы - резко сокращалось.

Каких только прозвищ не давали средневековые металлурги новому сплаву. В странах Центральной Европы его называли диким камнем, гусем, в Англии - свинским железом (по-английски чугун так называется и сейчас), да и русское слово чушка, то есть чугунный слиток, имеет то же происхождение.

Поскольку никакого применения чугун не находил, его обычно выбрасывали на свалку. Но вот в Х1У веке кому-то пришла счастливая мысль загрузить чугун снова в печь и переплавить вместе с рудой. Эта попытка знаменовала собой настоящий переворот в металлургии железа. Оказалось, что такой способ позволяет сравнительно легко получать нужную сталь, притом в больших количествах. Увы, история не сохранила для нас имя этого средневекового изобретателя.

Нововведение привело к четкому разделению «труда»: в домницах, ставших уже к тому времени более совершенными доменными печами, из руды выплавлялся чугун, а в кричных горнах из него удалялся лишний углерод, то есть осуществлялся процесс превращения чугуна в сталь - «кричный передел». Так возник двухстадийный способ получения стали из железной руды: руда - чугун, чугун - сталь.

Теперь спрос на чугун, прежде всего как на полупродукт, превращаемый затем в сталь, резко увеличился. И доменные печи вырастали повсюду, как грибы после дождя. Но поскольку для доменной плавки требовалось много древесного угля, вскоре в тех странах, которые не были богаты лесами, начал остро ощущаться его недостаток, и металлургия, лишившись топлива, пошла здесь на убыль. Такое произошло, например, в Англии, долгое время занимавшей главенствующие позиции в железоделательном производстве.

Тяжелое положение, в котором оказалась в связи с этим английская промышленность, вынудила металлургов искать замену древесному углю. Прежде всего их внимание привлек каменный уголь, которым природа, не скупясь, одарила Британские острова. Однако все попытки выплавить на нем чугун кончались неудачей: уголь в процессе нагрева измельчался, а это сильно затрудняло дутье. Но вот наконец в 1735 году англичанину Абрахаму Дерби удалось осуществить доменный процесс на коксе - топливе, полученном из коксующегося каменного угля при его нагревании без доступа воздуха до высоких температур (950-1050°С), при этом уголь не измельчался, а спекался в куски. Сегодня без кокса немыслимы ни доменная плавка, ни ряд других металлургических процессов.

XVIII и XIX века внесли немало нового в конструкцию доменной печи: были изобретены первые воздуходувные машины, а рядом с домной вырос «почетный караул» - огромные тупоносые сигары воздухонагревателей, благодаря которым в печь теперь подается горячий воздух.

Древний горн для получения железной крицы. Горн с воздушным дутьем (XVI век). Доменная печь (конец XVIII века)

Большие перемены произошли и на второй стадии металлургического производства. Сначала кричный горн уступил место более совершенной печи - пудлинговой. Здесь расплавленный чугун перемешивали (отсюда и название печи - от английского слова puddle - перемешивать) вместе с железистыми шлаками и в результате получали крицы малоуглеродистого железа. А во второй половине прошлого века были созданы более производительные сталеплавильные агрегаты - конвертер и мартеновская печь. В них чугун превращался уже не в тестообразную массу - крицу, а в жидкую сталь.

Затем в историю металлургии была вписана еще одна важная страница: сконструирована дуговая сталеплавильная печь, позволявшая получать металл высокого качества. У пламени, тысячелетиями монопольно владевшего всеми правами на плавку металлов, появился серьезный конкурент - электрический ток.

В последние десятилетия в металлургии наблюдается своеобразная «акселерация»: размеры всевозможных печей растут из года в год. Давно ли домны объемом в две тысячи кубометров считались чуть ли не чудом света, а сегодня в мире действуют значительно более внушительные колоссы - «четырехтысячники» и даже «пятитысячники».

В течение еще длительного периода домны, несомненно, сохранят свое значение. Тем не менее судьбу их вряд ли можно считать безоблачной. В отличие от примитивного древнего горна, в котором наши предки получали железо непосредственно из руды, современное исполинское сооружение - доменная печь - производит в основном не тот металл, который непосредственно требуется технике, а лишь передельный продукт, превращаемый затем на следующем этапе в нужную нам сталь (исключение составляет литейный чугун, идущий на производство отливок; его доля в общем объеме выплавляемого чугуна не превышает 15 процентов). Иными словами, в стремлении достичь высоких количественных показателей металлурги вынуждены идти как бы окольными путями.

Вопрос об изменении технологического маршрута в производстве стали давно занимает ученых. И дело здесь не в праздном желании выпрямить пути-дороги черной металлургии. Причина в другом.

У доменной печи есть серьезный недостаток. Суть его в том, хотя это и может показаться на первый взгляд странным, что непременное «блюдо» в ее рационе - кокс. Тот самый кокс, изобретение которого стало заметной вехой в развитии металлургии железа. Ведь именно благодаря коксу вот уже два с половиной столетия домна получает отличное высококалорийное «питание». Но постепенно на доменном небосклоне начали появляться тучи, которые с полным основанием можно назвать коксовыми.

В чем же дело?

В природе кокса, как известно, нет. Его получают из каменных углей. Но не из любых. А лишь из тех, что имеют склонность к коксованию (спеканию). Таких углей в мире не очень много, поэтому год от года они становятся все дефицитнее и дороже. Да и уголь еще нужно превратить в кокс. Процесс этот довольно сложный и трудоемкий, сопровождающийся выделением вредных побочных продуктов с отнюдь не парфюмерными ароматами. Чтобы по возможности избавить от них атмосферу, воду, почву, приходится сооружать дорогостоящие очистные устройства.

Удорожание кокса привело к тому, что он оказался самой солидной статьей в себестоимости чугуна: на его долю приходится примерно половина всех затрат. Вот почему доменщики постоянно стремятся сократить расход кокса, частично заменяя его природным газом, пылевидным углем, мазутом, и здесь уже достигнуты немалые успехи. Так, может быть, развивая наступление на кокс, доменщикам постепенно удастся полностью от него избавиться? Но тогда придется избавляться и от самой домны: ведь без кокса она, что печка без дров.

Проблемами бескоксовой металлургии занимался еще основоположник современного металловедения Д. К, Чернов. В конце прошлого века он предложил оригинальную конструкцию шахтной печи, которая выплавляла бы не чугун, а железо и сталь. К сожалению, его идее не суждено было воплотиться в жизнь. Спустя примерно полтора десятилетия после того, как Чернов представил свой проект, он с горечью писал: «Вследствие обычной косности наших частных заводов я обратился в министерство торговли и промышленности в надежде получить возможность осуществить предлагаемый способ в упрощенном виде на одном из казенных горных заводов. Однако несмотря на двукратно выраженное тогдашним министром желание помочь производству такого опыта, вопрос этот встретил неодолимые препятствия среди шкафов и коридоров министерства».

Сторонником бездоменного производства был и Д. И. Менделеев. «Я полагаю,- писал он на рубеже столетий,- что придет со временем опять пора искать способы прямого получения железа и стали из руд, минуя чугун».

Десятки лет ученые и инженеры разных стран стремились найти приемлемую технологию прямого восстановления железа. Были выданы сотни патентов, предложены и созданы разнообразные агрегаты, установки, печи. Однако даже самые, казалось бы, многообещающие идеи долгое время не удавалось воплотить в жизнь.

Первая сравнительно удачная промышленная установка для прямого получения железа была сооружена в 1911 году в Швеции по проекту инженера Э. Сьерина. Достоинством этой технологии было то. что восстановителем, отбирающим у железа кислород, служили отходы угольного и коксового производства (каменноугольная пыль и мелкие фракции кокса), а сама печь отапливалась дешевыми сортами угля. К тому же весьма высоким было качество выплавляемого металла, чем всегда славилась Швеция. Тем не менее эта технология не получила широкого распространения, поскольку процесс длился несколько суток. Конкурировать с хорошо к тому времени сработавшимися «дуэтами» домна - мартен или домна - конвертер шведская установка не могла.

Важный шаг в развитии технологии прямого получения железа был сделан в 1918 году, когда шведский инженер М. Виберг предложил вести процесс восстановления в шахтной печи используя для этой цели горючий газ содержащий окись углерода и водород. Способ позволял превращать руду в 95-процентное железо. Но (и здесь не обошлось без «но») у этого способа был существенный недостаток: исходным сырьем для получения восстановительного газа служил все тот же кокс, а для его газификации нужны были сложные и дорогие устройства - электрогазогенераторы.

В нашей стране большим энтузиастом бездоменной технологии был доцент Сибирского металлургического института В. П. Ремин. Еще в конце 30-х годов он разработал конструкцию электропечи, в которой руда должна была расплавляться, сползая по наклонной подине, как лед в горах (поэтому печь назвали глетчерной), а затем из расплава предполагалось восстанавливать железо. Вероломное нападение на нашу страну гитлеровской Германии поставило перед металлургами много трудных задач, и эти эксперименты пришлось отложить до лучших времен.

Доменная печь: 1 - скип; 2 - приемная воронка: 3 - распределитель шихты: 4 - воздушная фурма; 5 - чугунная лётка: 6 - шлаковая лётка.

Но и когда они настали, оказалось, что у специалистов нет единой точки зрения. Одни безоговорочно ратовали за испытанную веками домну, другим же виделись бездоменные и бескоксовые перспективы. В 1958 году академик И. П. Бардин, высказываясь по поводу прямого получения железа из руды, заметил, что «известный американский металлург Смит, который называл доменную печь жерновом повешенным на шею металлургии в наказание за ее грехи в области научных исследований вынужден был при рассмотрении конкретных процессов вернуться к доменной печи как единственному в настоящее время агрегату, на котором может базироваться металлургия».

В те годы металлургия и впрямь не имела заслуживающей внимания альтернативы доменной печи. Несмотря на многочисленные попытки разработать способы получения железа непосредственно из руды, найти решение, которое бы безоговорочно удовлетворило металлургов, долго не удавалось. Либо несовершенной была технологическая схема, либо ненадежным или малопроизводительным оказывалось оборудование, либо оставляло желать лучшего качество получаемого металла. Кроме того, предлагавшиеся варианты часто не оправдывались экономически: металл получался очень дорогим. Трудной задачей оставался и выбор восстановителя. Поиски зашли в тупик, хотя в Швеции, СССР, США. Мексике, Венесуэле, ФРГ и Японии действовало несколько небольших установок для прямого получения железа из руд.

В том, что именно эти страны раньше других начали внедрять новую технологию, не было ничего удивительного. Например металлургия Швеции издавна специализируется на производстве высококачественной стали, а, как показала практика, путь прямого восстановления - это и путь прямого улучшения качества металла. Что же касается Мексики и Венесуэлы, то они стали лидерами поневоле - в этих странах нет коксующихся углей, зато есть большие запасы природного газа, поэтому развивать черную металлургию на традиционной основе, то есть сооружая доменные печи, они при всем желании не могли.

К концу 50-х годов металлурги пришли к твердому убеждению, что в роли восстановителя в процессах прямого получения железа должен выступать газ. Это означало, что дальнейшие поиски следовало вести в направлении, предложенном Вибергом. Вскоре в ряде стран были найдены удачные решения. Так, достоинством одной из предложенных технологий было то, что восстановитель оказывался практически бесплатным: изобретатели предложили использовать отходящий газ электросталеплавильных цехов, который прежде выбрасывался в атмосферу. Оригинальным было и другое решение. Из шахтной печи, где происходило восстановление железа, горячий газ направлялся не в небеса, а в рекуператор и отдавал свое тепло поступающему туда газ-восстановителю.

Технология получения железа в древности

Для получения железа из руды, сначала нужно получить крицу. Для этого сначала использовалась окисленная железная руда, которая чаще всего залегает у поверхности. После открытия ее свойств такие залежи быстро истощились в результате их интенсивной разработки.

Болотные руды распространены гораздо шире. Они образовались в субатлантическом периоде, когда в процессе заболачивания железная руда оседала на дно водоемов. Все средневековье черная металлургия использовала болотные руды. Ими даже платили повинности. Получение железа из руды в относительно большом количестве стало возможным после изобретения сыродутного горна. Это название появилось после изобретения дутья подогретым воздухом в доменных печах. В древности же металлурги подавали в горн сырой (холодный) воздух. При температуре 900 o с помощью углекислого газа, отнимающего у окиси железа кислород, происходит восстановление железа из руды и получается тесто или бесформенный, пропитанный шлаком пористый кусок – крица. Для осуществления этого процесса был необходим древесный уголь как источник углекислого газа. Крица после этого проковывалась, для того чтобы удалить из нее шлак. Сыродутный способ, иногда называемый варкой железа, неэкономичен, но он долгое время оставался единственным и неизменным способом получения черного металла.

Сначала железо выплавляли в обычных, закрытых сверху ямах, позднее стали строить глиняные печи-горны. В рабочее пространство горна слоями загружали измельченную руду и уголь, все это поджигалось, и через отверстия-сопла специальными (кожаными) мехами нагнетался воздух. Каменная порода оседает в шлак при температуре 1300-1400 o , при которой получается сталь – железо, содержащее от 0.3 до 1.2%. углерода. При остывании оно становится очень твердым. Чтобы получить чугун – плавкое железо с содержанием углерода 1.5-5%, – нужна более сложная конструкция горна с большим рабочим пространством. При этом температура плавления железа оказывалась ниже, и оно частично вытекало из горна вместе со шлаком. При остывании оно становилось хрупким, и его поначалу выбрасывали, но потом научились использовать. Чтобы получить из чугуна ковкое железо, нужно удалить из него углерод.

Технология создания железных сплавов

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Древние люди долгое время жили богато и счастливо - каменные топоры делали из яшмы, а для получения меди пережигали малахит, но все хорошее имеет тенденцию кончаться. Одной из причин краха античной цивилизации Средиземноморья стало истощение минеральных ресурсов. Золото кончилось не в казне, а в недрах, олово иссякло даже на «Оловянных островах». Хотя медь и добывается на Синае и Кипре до сих пор, но те месторождения, которые разрабатываются сейчас, римлянам доступны не были. Среди прочего, кончилась и пригодная для сыродутной обработки руда. Только свинца ещё было много.

Впрочем, варварские племена, заселившие ставшую бесхозной Европу, долгое время не знали, что недра её истощены предшественниками. Учитывая громадное падение объёма производства металлов, тех ресурсов, которыми римляне побрезговали, долгое время хватало. Позже, металлургия стала возрождаться в первую очередь в Германии и Чехии - то есть, там, куда римляне не добрались с кирками и тачками.

Более высокую ступень в развитии чёрной металлургии представляли собой постоянные высокие печи называемые в Европе штукофенами. Это действительно была высокая печь - с четырёхметровой трубой для усиления тяги. Мехи штукофена качались уже несколькими людьми, а иногда и водяным двигателем. Штукофен имел дверцы, через которые раз в сутки извлекалась крица.

Изобретены штукофены были в Индии в начале первого тысячелетия до новой эры. В начале нашей эры они попали в Китай, а в VII веке вместе с «арабскими» цифрами арабы заимствовали из Индии и эту технологию. В конце XIII века штукофены стали появляться в Германии и Чехии (а ещё до того были на юге Испании) и в течение следующего века распространились по всей Европе.

Производительность штукофена была несравненно выше, чем сыродутной печи - в день он давал до 250 кг железа, а температура плавления в нем оказывалась достаточна для науглероживания части железа до состояния чугуна. Однако штукофенный чугун при остановке печи застывал на её дне, смешиваясь со шлаками, а очищать металл от шлаков умели тогда только ковкой, но как раз ей-то чугун и не поддавался. Его приходилось выбрасывать.

Иногда, впрочем, штукофенному чугуну пытались найти какое-то применение. Например, древние индусы отливали из грязного чугуна гробы, а турки в начале XIX века - пушечные ядра. Трудно судить, как гробы, но ядра из него получались - так себе.

Ядра для пушек из железистых шлаков в Европе отливали еще в конце XVI в. Из литой брусчатки делались дороги. В Нижнем Тагиле до сих пор сохранились здания с фундаментами из литых шлаковых блоков.

Металлурги давно заметили связь между температурой плавления и выходом продукта - чем выше она была, тем большую часть содержащегося в руде железа удавалось восстановить. Потому рано или поздно им приходила мысль форсировать штукофен предварительным подогревом воздуха и увеличением высоты трубы. В середине XV века в Европе появились печи нового типа - блауофены, которые сразу преподнесли сталеварам неприятный сюрприз.

Более высокая температура плавления действительно значительно повысила выход железа из руды, но она же повысила и долю железа науглероживающегося до состояния чугуна. Теперь уже не 10 %, как в штукофене, а 30 % выхода составлял чугун - «свиное железо», ни к какому делу не годное. В итоге, выигрыш часто не окупал модернизации.

Блауофенный чугун, как и штукофенный, застывал на дне печи, смешиваясь со шлаками. Он выходил несколько лучшим, так как его самого было больше, следовательно, относительное содержание шлаков выходило меньше, но продолжал оставаться малопригодным для литья. Чугун получаемый из блауофенов оказывался уже достаточно прочен, но оставался ещё очень неоднородным - из него выходили только предметы простые и грубые - кувалды, наковальни. Уже прилично выходили пушечные ядра.

Кроме того, если в сыродутных печах могло быть получено только железо, которое потом науглероживалось, то в штукофенах и блауофенах внешние слои крицы оказывались состоящими из стали. В блауофенных крицах стали было даже больше, чем железа. С одной стороны, это казалось хорошо, но, вот, разделить-то сталь и железо оказывалось весьма затруднительно. Содержание углерода становилось трудно контролировать. Только долгой ковкой можно было добиться однородности его распределения.

В своё время, столкнувшись с этими затруднениями, индусы не стали двигаться дальше, а занялись тонким усовершенствованием технологии и пришли к получению булата. Но, индусов в ту пору интересовало не количество, а качество продукта. Европейцы, экспериментируя с чугуном, скоро открыли передельный процесс, поднимающий металлургию железа на качественно новый уровень.

Следующим этапом в развитии металлургии стало появление доменных печей. За счёт увеличения размера, предварительного подогрева воздуха и механического дутья, в такой печи все железо из руды превращалось в чугун, который расплавлялся и периодически выпускался наружу. Производство стало непрерывным - печь работала круглосуточно и не остывала. За день она выдавала до полутора тонн чугуна. Перегнать же чугун в железо в горнах было значительно проще, чем выколачивать его из крицы, хотя ковка все равно требовалась - но теперь уже выколачивали шлаки из железа, а не железо из шлаков.

Доменные печи впервые были применены на рубеже XV-XVI веков в Европе. На Ближнем Востоке и в Индии эта технология появилась только в XIX веке (в значительной степени, вероятно, потому, что водяной двигатель из-за характерного дефицита воды на Ближнем Востоке не употреблялся). Наличие в Европе доменных печей позволило ей обогнать в XVI веке Турцию если не по качеству металла, то по валу. Это оказало несомненное влияние на исход борьбы, особенно когда оказалось, что из чугуна можно лить пушки.

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением - применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался - из-за высокого содержания вредных для качества продукта примесей, в первую очередь - серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля - большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Среди многих металлургических профессий того времени, пожалуй, самой тяжелой была профессия пудлинговщика. Пудлингование было основным способом получения железа почти на протяжении всего XIX в. Это был очень тяжелый и трудоемкий процесс. Работа при нем шла так: На подину пламенной печи загружались чушки чугуна; их расплавляли. По мере выгорания из металла углерода и других примесей температура плавления металла повышалась и из жидкого расплава начинали «вымораживаться» кристаллы довольно чистого железа. На подине печи собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали к операции накатывания крицы при помощи железного лома. Перемешивая ломом массу металла, они старались собрать вокруг лома комок, или крицу, железа. Такой комок весил до 50 - 80 кг и более. Крицу вытаскивали из печи и подавали сразу под молот - для проковки с целью удаления частиц шлака и уплотнения металла.

Устранять серу коксованием научились в Англии в 1735 году, после чего возможность использовать для выплавки железа большие запасы каменного угля. Но за пределами Англии эта технология распространилась только в XIX веке.

Потребление же топлива в металлургии уже тогда было огромно - домна пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь.

Электрический и индукционный способы выплавки железа

Разнообразие составов сталей очень затрудняет их выплавку. Ведь в мартеновской печи и конвертере атмосфера окислительная, и такие элементы, как хром, легко окисляются и переходят в шлак, т.е. теряются. Значит, чтобы получить сталь с содержанием хрома 18%, в печь надо дать гораздо больше хрома, чем 180 кг на тонну стали. А хром – металл дорогой. Как найти выход из этого положения?

Выход был найден в начале XX в. Для выплавки металла было предложено использовать тепло электрической дуги. В печь круглого сечения загружали металлолом, заливали чугун и опускали угольные или графитовые электроды. Между ними и металлом в печи («ванне») возникала электрическая дуга с температурой около 4000°C. Металл легко и быстро расплавлялся. А в такой закрытой электропечи можно создавать любую атмосферу – окислительную, восстановительную или совершенно нейтральную. Иными словами, можно предотвратить выгорание ценных элементов. Так была создана металлургия качественных сталей.

Позднее был предложен еще один способ электроплавки – индукционный. Из физики известно, что если металлический проводник поместить в катушку, по которой проходит ток высокой частоты, то в нем индуцируется ток и проводник нагревается. Этого тепла хватает, чтобы за определенное время расплавить металл. Индукционная печь состоит из тигля, в футеровку которого вделана спираль. По спирали пропускают ток высокой частоты, и металл в тигле расплавляется. В такой печи тоже можно создать любую атмосферу.

В электрических дуговых печах процесс плавки идет обычно в несколько стадий. Сначала из металла выжигают ненужные примеси, окисляя их (окислительный период). Затем из печи убирают (скачивают) шлак, содержащий окислы этих элементов, и загружают ферросплавы – сплавы железа с элементами, которые нужно ввести в металл. Печь закрывают и продолжают плавку без доступа воздуха (восстановительный период). В результате сталь насыщается требуемыми элементами в заданном количестве. Готовый металл выпускают в ковш и разливают.

Химические реакции при получении железа

В современной промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (Fe 3 O 4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:

2C + O 2 → 2CO.

В свою очередь, угарный газ восстанавливает железо из руды:

3CO + Fe 2 O 3 → 2Fe + 3CO 2 .

Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.

Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):

CaCO 3 → CaO + CO 2 .

Оксид кальция соединяется с диоксидом кремния, образуя шлак:

CaO + SiO 2 → CaSiO 3 .

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности, и его можно сливать отдельно от металла. Шлак затем употребляется в строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишний углерод и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используют и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, содержащими водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор - обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.