» » Определение массы тела путем взвешивания на весах. Изучение движения тела по окружности под действием сил Лабораторная работа номер 2 исследование движения тела

Определение массы тела путем взвешивания на весах. Изучение движения тела по окружности под действием сил Лабораторная работа номер 2 исследование движения тела

Упругости и тяжести

Цель работы

Определение центростремительного ускорения шарика при его равномерном движении по окружности

Теоретическая часть работы

Эксперименты проводятся с коническим маятником: небольшой шарик, подвешенный на нити движется по окружности. При этом нить описывает конус (рис.1). На шарик действуют две силы: сила тяжести и сила упругости нити. Они создают центростремительное ускорение, направленное по радиусу к центру окружности. Модуль ускорения можно определить кинематически. Он равен:

Для определения ускорения (a) нужно измерить радиус окружности (R) и период обращения шарика по окружности (T).

Центростремительное ускорение можно определить так же, используя законы динамики.

Согласно второму закону Ньютона, Запишем данное уравнение в проекциях на выбранные оси (рис.2):

Ох: ;

Oy: ;

Из уравнения в проекции на ось Ох выразим равнодействующую:

Из уравнения в проекции на ось Оу выразим силу упругости:

Тогда равнодействующая может быть выражена:

а отсюда ускорение: , где g=9,8 м/с 2

Следовательно, для определения ускорения необходимо измерить радиус окружности и длину нити.

Оборудование

Штатив с муфтой и лапкой, лента измерительная, шарик на нити, лист бумаги с начерченной окружностью, часы с секундной стрелкой

Ход работы

1. Подвесить маятник к лапке штатива.

2. Измерить радиус окружности с точностью до 1мм. (R)

3. Штатив с маятником расположить так, чтобы продолжение шнура проходило через центр окружности.

4. Взять пальцами нить у точки подвеса, вращать маятник так, чтобы шарик описывал окружность, равную начерченной на бумаге.

6. Определить высоту конического маятника (h). Для этого измерить расстояние по вертикали от точки подвеса до центра шарика.

7. Найти модуль ускорения по формулам:

8. Вычислить погрешности.

Таблица Результаты измерений и вычислений

Вычисления

1. Период обращения: ; Т=

2. Центростремительное ускорение:

; а 1 =

; а 2 =

Среднее значение центростремительного ускорения:

; а ср =

3. Абсолютная погрешность:

∆а 1 =

∆а 2 =

4. Среднее значение абсолютной погрешности: ; Δа ср =

5. Относительная погрешность: ;



Вывод

Записать ответы на вопросы полными предложениями

1. Сформулируйте определение центростремительного ускорения. Запишите его и формулу для вычисления ускорения при движении по окружности.

2. Сформулируйте второй закон Ньютона. Запишите его формулу и формулировку.

3. Запишите определение и формулу для вычисления

силы тяжести.

4. Запишите определение и формулу для вычисления силы упругости.


ЛАБОРАТОРНАЯ РАБОТА 5

Движение тела под углом к горизонту

Цель

Научиться определять высоту и дальность полета при движении тела с начальной скоростью, направленной под углом к горизонту.

Оборудование

Модель «Движение тела, брошенного под углом к горизонту» в электронных таблицах

Теоретическая часть

Движение тел под углом к горизонту представляет сложное движение.

Движение под углом к горизонту можно разделить на две составляющие: равномерное движение по горизонтали (вдоль оси x) и одновременно равноускоренное, с ускорением свободного падения, по вертикали (вдоль оси y). Так движется лыжник при прыжке с трамплина, струя воды из брандспойта, артиллерийские снаряды, метательные снаряды

Уравнения движения s w:space="720"/>"> и

запишем в проекциях на оси x и y:

На ось X: S=

Для определения высоты полета необходимо помнить, что в верхней точке подъема скорость тела равна 0. Тогда время подъема будет определено:

При падении проходит такое же время. Поэтому время движения определяется как

Тогда высота подъема определяется по формуле:

А дальность полета:

Наибольшая дальность полета наблюдается при движении под углом 45 0 к горизонту.

Ход работы

1. Запишите в рабочей тетради теоретическую часть работы и зарисуйте график.

2. Откройте файл «Движение под углом к горизонту.xls».

3. В ячейку В2 введите значение начальной скорости, 15 м/с, а в ячейку В4 – угол 15 градусов (в ячейки заносятся только числа, без единиц измерения).



4. Рассмотрите результат на графике. Измените значение скорости на 25 м/с. Сравните графики . Что изменилось?

5. Измените значения скорости на 25 м/с, а угла –35 градусов; 18 м/с, 55 градусов. Рассмотрите графики.

6. Выполните вычисления по формулам для значений скоростей и углов (по вариантам):

8. Проверьте ваши результаты, рассмотрите графики. Графики начертите в масштабе на отдельном листе формата А4

Таблица Значения синусов и косинусов некоторых углов

30 0 45 0 60 0
Синус (Sin) 0,5 0,71 0,87
Косинус (Cos) 0,87 0,71 0,5

Вывод

Запишите ответы на вопросы полными предложениями

1. От каких величин зависит дальность полета тела, брошенного под углом к горизонту?

2. Приведите примеры движения тел под углом к горизонту.

3. Под каким углом к горизонту наблюдается наибольшая дальность полета тела под углом к горизонту?

ЛАБОРАТОРНАЯ РАБОТА 6

Изучение движения тела по окружности под действием сил упругости и тяжести.

Цель работы: определение центростремительного ускорения шарика при его равномерном движении по окружности.


Оборудование: штатив с муфтой и лапкой, лента измерительная, циркуль, динамометр лабораторный, весы с разновесами, шарик на нити, кусочек пробки с отверстием, лист бумаги, линейка.


1. Приведем груз во вращение по нарисованной окружности радиуса R= 20 см. Измеряем радиус с точностью 1 см. Измерим время t, за которое тело совершит N=30 оборотов.


2. Определяем высоту конического маятника h по вертикали от центра шарика до точки подвеса. h=60,0 +- 1 см.


3.Оттягиваем горизонтально расположенным динамометром шарик на расстояние, равное радиусу окружности и измеряем модуль составляющей F1 F1= 0,12 Н, масса шарика m=30 г +- 1 г.



4.Результаты измерений заносим в таблицу.



5.Вычислим аn по формулам, приведенным в таблице.



6.Результат вычисления заносим в таблицу.


Вывод: сравнивая полученные три значения модуля центростремительного ускорения, убеждаемся, что они примерно одинаковы. Это подтверждает правильность наших измерений.

3. Рассчитайте и занесите в таблицу среднее значение промежутка времени <t >, за который шарик совершает N = 10 оборотов.

4. Рассчитайте и занесите в таблицу среднее значение периода вращение <T > шарика.

5. По формуле (4) определите и занесите в таблицу среднее значение модуля ускорения.

6. По формулам (1) и (2) определите и занесите в таблицу среднее значение модулей угловой и линейной скорости.

Опыт N t T a ω v
1 10 12.13
2 10 12.2
3 10 11.8
4 10 11.41
5 10 11.72
Ср. 10 11.85 1.18 4.25 0.63 0.09

7. Вычислите максимальное значение абсолютной случайной погрешности измерения промежутка времени t .

8. Определите абсолютную систематическую погрешность промежутка времени t .

9. Вычислите абсолютную погрешность прямого измерения промежутка времени t .

10. Вычислите относительную погрешность прямого измерения промежутка времени.

11. Запишите результат прямого измерения промежутка времени в интервальной форме.

Ответьте на контрольные вопросы

1. Как изменится линейная скорость шарика при его равномерном вращательном движении относительно центра окружности?

Линейная скорость характеризуется направлением и величиной (модулем). Модуль — величина постоянная, а направление при таком движении способно изменяться.

2. Как доказать соотношение v = ωR ?

Так как v = 1/T, связь циклической частоты с периодом и частой 2π = VT, откуда V = 2πR. Связь линейной скорости и угловой 2πR = VT, отсюда V = 2πr/T. (R — радиус описанной, r — радиус вписанной)

3. Как зависит период вращения T шарика от модуля его линейной скорости?

Чем выше показатель скорости, тем меньше показатель периода.

Выводы: научился определять период вращения, модули, центростремительного ускорения, угловую и линейную скорости при равномерном вращении тела и рассчитывать абсолютную и относительную погрешности прямых измерений промежутка времени движения тела.

Суперзадание

Определите ускорение материальной точки при её равномерном вращении, если за Δt = 1 с она прошла 1/6 длины окружности, имея модуль линейной скорости v = 10 м/с.

Длина окружности:

S = 10 ⋅ 1 = 10 м
l = 10⋅ 6 = 60 м

Радиус окружности:

r = l/2π
r = 6/2 ⋅ 3 = 10 м

Ускорение:

a = v2 /r
a = 1002 /10 = 10 м/c2 .

«Изучение движения тела по окружности под действием двух сил»

Цель работы: определение центростремительного ускорения шарика при его равномерном движении по окружности.

Оборудование: 1. штатив с муфтой и лапкой;

2. лента измерительная;

3. циркуль;

4. динамометр лабораторный;

5. весы с разновесами;

6. шарик на нити;

7. кусочек пробки с отверстием;

8. лист бумаги;

9. линейка.

Порядок выполнения работы:

1. Определяем массу шарика на весах с точностью до 1 г.

2. Нить продеваем сквозь отверстие и зажимаем пробку в лапке штатива (рис 1)

3. Вычерчиваем на листе бумаги окружность, радиус которой около 20 см. Измеряем радиус с точностью до 1 см.

4. Штатив с маятником располагаем так, чтобы продолжение шнура проходило через центр окружности.

5. Взяв нить пальцами у точки подвеса, вращаем маятник так, чтобы шарик описывал окружность, равную начерченной на бумаге.

6. Отсчитываем время, за которое маятник совершает, к примеру, N=50 оборотов. Рассчитываем период обращения T =

7. Определяем высоту конического маятника, Для этого измеряем расстояние по вертикали от центра шарика до точки подвеса.

8. Находим модуль нормального ускорения по формулам:

a n 1 = a n 2 =

a n 1 = a n 2 =

9. Оттягиваем горизонтально расположенным динамометром шарик на расстояние, равное радиусу окружности, и измеряем модуль составляющей F

Затем вычисляем ускорение по формуле a n 3 = a n 3 =

10. Результаты измерений заносим в таблицу.

№ опыта R м N ∆t c Т c h м m кг F Н a n1 м/с 2 a n 2 м/с 2 a n 3 м/с 2

Рассчитайте относительную погрешность вычисленияa n 1 и запишите ответ в виде: a n 1 = a n 1ср ± ∆ a n 1ср a n 1 =

Сделайте вывод:

Контрольные вопросы:

1. К какому виду движения относится движение шарика на нити в лабораторной работе? Почему?

2. Сделайте чертёж в тетради и укажите правильно названия сил. Назовите точки приложения этих сил.

3. Какие законы механики выполняются при движении тела в этой работе? Изобразите графически силы и запишите правильно законы

4. Почему сила упругости F, измеренная в опыте, равна результирующей сил приложенных к телу? Назовите закон.