» » Как называют стороны прямоугольника. Прямоугольник. Формулы и свойства прямоугольника. Прилегающие стороны перпендикулярны друг другу

Как называют стороны прямоугольника. Прямоугольник. Формулы и свойства прямоугольника. Прилегающие стороны перпендикулярны друг другу

4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата :

5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):

6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:

7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:

8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника.

Формулы для определения угла между стороной и диагональю прямоугольника:

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника.

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

Прямоугольник … Орфографический словарь-справочник

Параллелограмм, четырехугольник, квадрат Словарь русских синонимов. прямоугольник сущ., кол во синонимов: 4 квадрат (9) … Словарь синонимов

Термин, используемый в техническом анализе конъюнктуры финансовых рынков для обозначения движения цен, укладывающегося на графике в прямоугольник. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический словарь. 2 е изд., испр … Экономический словарь

Словарь бизнес-терминов

ПРЯМОУГОЛЬНИК, параллелограмм, все углы которого прямые … Современная энциклопедия

Четырехугольник, у которого все углы прямые … Большой Энциклопедический словарь

ПРЯМОУГОЛЬНИК, четырехсторонняя геометрическая фигура (четырехугольник), внутренние углы которой являются прямыми, а противоположные стороны попарно параллельны и равны. Это особый случай ПАРАЛЛЕЛОГРАММА … Научно-технический энциклопедический словарь

ПРЯМОУГОЛЬНИК, прямоугольника, муж. (геом.). Четырехугольник, в котором все углы прямые. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ПРЯМОУГОЛЬНИК, а, муж. 1. Четырёхугольник, у к рого все углы прямые. 2. Название офицерского знака различия такой формы на петлицах в Красной Армии (с 1924 по 1943 г.). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Вид графика движения цены в виде треугольника, используемый в техническом анализе конъюнктуры финансовых рынков. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

Книги

  • Прямоугольник (+ наклейки) , Валерия Вилюнова. Эта книга с наклейками предназначена для самых маленьких читателей. В 2 года ребенок с удовольствием выполняет увлекательные задания, приклеивая наклейки в нужноеместо. Это занятие не только…
  • Геометрическая мозаика. Прямоугольник , Вилюнова В.. Книга «Прямоугольник» предназначена для самых маленьких читателей. С ее помощью ваш малыш познакомится с геометрическими фигурами – прямоугольником и трапецией, научится различать и называть…

Разделы: Начальная школа

Тема : Виды четырехугольников. Прямоугольник

  1. Обеспечить усвоение учащимися знаний о различных видах четырехугольников, прямоугольника.
  2. Развить умения классифицировать факты, делать выводы, строить прямоугольник и отличать его из ряда четырехугольников.
  3. Воспитание мотивов учения, положительного отношения к занятиям.

Тип урока – комбинированный.

Вид урока – дидактическая игра.

Методы и приемы обучения: диалогический и эвристический методы:

  • организация труда в парах;
  • фронтальная работа;
  • оперативная форма проверки знаний (спецкарточки);
  • демонстрация наглядных пособий;
  • работа в бригадах.

Оборудование:

  • кодоскоп;
  • плакат с видами четырехугольников;
  • наглядные пособия к сказке;
  • сигнальные карточки;
  • перфокарты для каждого ученика с заготовленными таблицами;
  • заготовки прямоугольников;
  • ножницы, линейки, карандаши, чертежные треугольники;
  • магнитная доска;
  • прямоугольники с номерками;
  • раздаточный материал (прямоугольники красного цвета для поощрения отвечающих);
  • магнитофон.

Ход урока

I. Актуализация прежних знаний (5 минут)

Сегодня на уроке мы с вами совершим путешествие в удивительную страну Геометрию :

– Кто знает, что в переводе с греческого обозначает слово “геометрия”?

“Гео” – земля, “метрия” – измерение.

Наука эта появилась в Греции.

Сопровождать нас будет в нашем путешествии (учитель показывает сказочного героя) удивительный герой – волшебник.

– Всех вас он зашифровал, и вы будете путешествовать под зашифрованными номерами.

– Кто узнал его? (Старик Хоттабыч.)

– Кто написал книжку “Старик Хоттабыч”? (Лагин.)

Старик Хоттабыч очень старый волшебник и его знания устарели, поэтому он пришел к вам на урок и хочет узнать, что же сейчас изучают современные дети. Помогите волшебнику разобраться.

– Что изображено на доске? (Геометрические фигуры.)

– Определите на какие 2 группы вы могли бы разделить эти геометрические фигуры? (Треугольники и четырехугольники.)

Заполните карточку №1. Укажите номера треугольников и четырехугольников. Все дети указывают в карточке номера.

В это время 2 ученика фиксируют ответы на доске.

– Укажите во второй карточке номера треугольников по углам (тупоугольный, прямоугольный, остроугольный) и по сторонам (равносторонний и равнобедренный).

Работу выполняют по вариантам, а потом обмениваются карточками и осуществляют взаимопроверку в парах.

II. Формирование новых понятий и способов действий

(20 минут)

1) Сегодня мы с нашим героем познакомимся с видами четырёхугольников, а именно; с прямоугольником, научимся его чертить и выделять среди других фигур Т.к. треугольников и четырёхугольников в геометрии много. Вот как выглядят некоторые из них:

ВИДЫ ЧЕТЫРЁХУГОЛЬНИКОВ

– Какие из них вы уже знаете?

Дети называют те виды, которые знают.

– Что общего у этих фигур, что их объединяет в одну группу?

(4 стороны, 4 угла, 4 вершины.)

– А чем один вид отличается от другого? (Длинами сторон и особенностями углов.)

Учитель обращает внимание детей на таблицу и говорит определения.

  1. Квадрат
  2. – прямоугольник, у которого все стороны равны.
  3. Трапеция
  4. – четырехугольник, у которого только 2 противоположные стороны параллельны (перевод “столик”).
  5. Параллелограмм
  6. – четырехугольник, у которого противоположные стороны параллельны и равны. – параллелограмм, у которого все стороны равны.
  7. Неправильный четырехугольник
  8. – фигура, у которой стороны не равны и не параллельны.

2) Помогите Хоттабычу из ряда четырехугольников найти похожие (1 3 5).

– Как называются углы у фигур 1, 3, 5? (Прямые.)

– А как бы вы назвали эти фигуры? (Прямоугольники.)

– Попробуйте сказать, что же такое прямоугольник?

Прямоугольник – геометрическая фигура, у которой все углы прямые и противоположные стороны равны.

– Назовите вершины у прямоугольника АВСД? (А, В, С, Д – вершины.)

– А углы? (<АВД, <ВДС, <ДСА, <САВ)

– Стороны? (АВ, ВД, СД, СА)

– Как вы думаете, прямоугольник – нужная геометрическая фигура или нет (да).

Поможет вам в этом убедиться сказка.

3) Сказка “Полезный прямоугольник”.

Прямоугольник завидовал квадрату.

– Я такой неуклюжий. если поднимусь во весь рост, то стану длинным и узким. Вот таким:

– А если я лягу на бок, то буду низким и толстым:

– А ты всегда остаешься одинаковым – и стоя, и сидя, и лежа.

– Да, с гордостью говорил квадрат. У меня все стороны равны, не то, что у некоторых, то дылда-дылдой, то блин-блином. А однажды случилось вот что:

Старик Хоттабыч заблудился в лесу. Ковра-самолета у него не было, борода намокла под дождем, и выбраться из леса он не мог. Он шел через чащу и встретился с квадратом и прямоугольником.

– Можно я заберусь на Вас и погляжу, где мой дом? – спросил он у квадрата.

Хоттабыч залез сначала на одну сторону квадрата, но ничего не увидел, потому что ему мешали верхушки деревьев. Тогда волшебник попросил квадрат перевернуться на другую сторону, но, как известно, у квадрата все стороны равны, поэтому он снова ничего не увидел.

– Гражданин Квадрат, помогите мне хотя бы перебраться через речку. Квадрат подошел к речке и попытался дотронуться до другого берега. НО...плюх!.

– Может быть, я смогу помочь Вам? – предложил скромный прямоугольник.

Он стал во весь свой рост и Хоттабыч взобрался на него и

оказался выше деревьев. Вдалеке он увидел свой дом и понял, куда надо идти. Тогда прямоугольник лег на бок и стал мостом. Хоттабыч перебрался по прямоугольнику через речку, помог ему подняться и, поблагодарив прямоугольник, отправился домой.

А квадрат, который после купания сушился на берегу, сказал

прямоугольнику:

– Вы, оказывается, полезная фигура

– Ну, что вы! – скромно улыбнулся прямоугольник.

Просто мои стороны разной длины 2 – длинные, 2 – короткие. Иногда это бывает очень удобно.

– Какие предметы прямоугольной формы вы видите у себя в классе?

4) Существует специальный чертежный треугольник, при помощи которого можно определить прямые углы в геометрической фигуре. Попробуйте самостоятельно опытным путем определить, какие из этих фигур прямоугольники.

КАРТОЧКА №3.

– Как в этом поиске вам помог чертежный треугольник?

Дети определяют у себя и называют номера фигур (2,4). Демонстрируют на доске, как им в определении помог чертежный треугольник.

5) Физминутка (песня “Дважды два четыре”).

Ваш учитель будет рад
Посмотреть на ваш
Встаньте дети возле парт
Покажите всем подряд
Руки выставьте вперед
А потом наоборот
Получился самолет
Отправляемся в полет
Неразлучные друзья / 2 раза
Квадрат, прямоугольник,
Неразлучные друзья
Геометрия и школьник

6) Начертите прямоугольник, пользуясь отрезками и чертежным треугольником:

Дети чертят у себя в тетрадях, а потом с объяснением у доски.

Чертим отрезок 4 см. Совмещаем сторону треугольника с отрезком и строим прямой угол, откладываем отрезок и т. д.

III. Формирование умения и навыков (18 минут)

1. Начертите прямоугольник, зная, что одна сторона 2 см, а другая на 4 см больше.

Анализ задачи:

– Можете ли вы сразу начертить прямоугольник? (Нет)

– Почему? (Не знаем длину второй стороны.)

– А как найти длину второй стороны? (2+4=6).

Работает бригада (4 человека).

2. У вас есть заготовки прямоугольников со сторонами 8 см и 4 см. Их нужно разрезать на 4 одинаковых треугольника, а затем из них составить квадрат. Как это сделать?

3. Старик Хоттабыч хочет убедиться, что вы были внимательными и усвоили то, о чем мы говорили. От его имени я задаю вопросы, а вы с помощью сигнальных карточек показываете ответ: Да – зеленый цвет, Нет – красный.

1) Верно ли, что если фигура имеет 4 угла, 4 стороны, 4 вершины, то ее можно назвать четырехугольником? (Да)

2) Является ли прямоугольник одним из видов четырехугольников? (Да)

3) Верно ли, что противоположные стороны прямоугольника не равны? (Нет)

4) Правильно ли, что квадрат можно назвать прямоугольником и четырехугольником? (Да)

4. Графический диктант

Отметьте точку А, от нее вниз под прямым углом проведите отрезок длиной 2 см и обозначьте его конец точкой В. От В вправо под прямым углом проведите отрезок длиной 4 см и обозначьте конец точкой С. Вверх проведите под прямым углом отрезок длиной 2 см и поставьте точку Д. Достройте самостоятельно фигуру, которой мы много внимания уделили на уроке.

– Какая это фигура? (прямоугольник)

5. Найдите на чертеже 3 четырехугольника :

6. Загадки.

Разгадав загадки, вы узнаете, что хочет сказать вам наш гость.

– О какой фигуре идет речь?

Он давно знакомый мой,
Каждый угол в нем прямой.
Все четыре стороны,
Одинаковой длины.
Вам его представить рад.
– Как зовут его? (Квадрат )

– Какая фигура может о себе так сказать?

Ты на меня, ты на него,
На всех нас посмотри.
У нас всего, у нас всего
По три стороны и три угла,
И столько же вершин,
И трижды – трудные дела,
Мы трижды совершим. (Треугольник )

IV. Итог урока.

– Какие виды четырехугольников вы знаете?

– Какая фигура называется прямоугольником?

V. Домашнее задание.

Придумайте сказку или кроссворд о геометрических фигурах.

Список литературы:

  1. В. Волина “Праздник числа”, Москва, Дрофа 1997 г.
  2. А.М. Пышкало “Методика обучения элементам геометрии в начальных классах”, Просвещение, 1980 г.
  3. Журнал “Завуч”, №1, 2000, Фомин А.А. “Соблюдение педагогических требований как фактор, повышающий профессиональную компетентность современного учителя”, с. 21.
  4. Журнал “Начальная школа”, №2, 2001 г. “Геометрия”, с.15.
  5. Газета “Начальная школа”, №3, 1997 г. “Геометрия”, с. 4.

Определение.

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника , а короткую - шириной прямоугольника .

Стороны прямоугольника одновременно является его высотами.


Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).


Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d 2 - b 2

b = √d 2 - a 2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

b = d cos β
2

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a 2 + b 2

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = D о

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S: sin β


Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b )

2. Формула периметру прямоугольника через площадь и любую сторону:

P = 2S + 2a 2 = 2S + 2b 2
a b

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d 2 - a 2 ) = 2(b + √d 2 - b 2 )

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 - a 2 ) = 2(b + √4R 2 - b 2 )

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 - a 2 ) = 2(b + √D o 2 - b 2 )


Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a √4R 2 - a 2 = b √4R 2 - b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a √D o 2 - a 2 = b √D o 2 - b 2


Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

В школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака , по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°;
  • представленный четырёхугольник - это параллелограмм с равными диагоналями;
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый , его особенности и признаки.

Поскольку прямоугольник - это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую - шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной - AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a - длина прямоугольника, b - его ширина, d - диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S - площадь фигуры, P - периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P - 2 b) / 2, b = (P - 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Периметр и площадь

Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь - это пространство, ограниченное периметром . Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa - 2 a ²) / 2; S = (Pb - 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника . Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали - с её диаметром.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Определение и свойства квадрата

Квадрат - это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат - это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1 . Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон - S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами - это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2 . Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника - 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие - это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3 . Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.