» » Формула остроградского грина примеры решения. Формула Грина. Формула Остроградского-Гаусса. Условия независимости криволинейного интеграла II рода от пути интегрирования

Формула остроградского грина примеры решения. Формула Грина. Формула Остроградского-Гаусса. Условия независимости криволинейного интеграла II рода от пути интегрирования

Формула Остроградского - Грина

Эта формула устанавливает связь между криволинейным интегралом по замкнутому контуры С и двойным интегралом по области, ограниченной этим контуром.

Определение 1. Область D называется простой областью, если её можно разбить на канечное число областей первого типа и независимо от этого на конечное число областей второго типа.

Теорема 1. Пусть в простой области определены функции P(x,y) и Q(x,y) непрерывные вместе со своими частными производными и

Тогда имеет место формула

где С - замкнутый контур области D.

Это формула Остроградского - Грина.

Условия независимости криволинейного интеграла от пути интегрирования

Определение 1. Говорят, что замкнутая квадрируемая область D односвязна, если любую замкнутую кривую l D можно непрерывно диформировать в точку так, что все точки этой кривой принадлежали бы области D (область без “дырок” - D 1), если такое деформирование невозможно, то область назывется многосвязной (с “дырками” - D 2).

Определение 2. Если значение криволинейного интеграла по кривой АВ не зависит от вида кривой, соединяющей точки А и В, то говорят, что этот криволинейный интеграл не зависит от пути интегрирования:

Теорема 1. Пусть в замкнутой односвязной области D определены непрерывные, вместе со своими частными производными функции P(x,y) и Q(x,y). Тогда следующие 4 условия равносильны (эквивалентны):

1) криволинейный интеграл по замкнутому контуру

где С - любой замкнутый контур в D;

2) криволинейный интеграл по замкнутому контуру не зависит от пути интегрирования в области D, т.е.

3) дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D, т.е., что существует функция F такая, что (х,у) D имеет место равенство

dF(x,y) = P(x,y)dx + Q(x,y)dy; (3)

4) для всех точек (х,у) D будет выполняться следующее условие:

Докажем по схеме.

Докажем, что из.

Пусть дано 1), т.е. = 0 по свойству 2 §1, что = 0 (по свойству 1 §1) .

Докажем, что из.

Дано, что кр.инт. не зависит от пути интегрирования, а только от выбора начала и канца пути

Рассмотрим функцию

Пакажем, что дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом функции F(x,y), т.е. , что

Зададим частный прирост

х F (x,y)= F(х + х, у) -F (x,y)= = == =

(по свойству 3 § 1, ВВ* Оу) = = P (c,y)х (по теореме о среднем, с -const), где x

(всилу непрерывности функции Р). Получили формулу (5). Аналогично получается формула (6).

Докажем, что из.

Дана формула

dF(x,y) = P(x,y)dx + Q(x,y)dy.

Очевидно, что = Р(х,у). Тогда

По условию теоремы правые части равенств (7) и (8) непрерывные функции, то по теореме о равенстве смешанных производных будут равны и левые части, т.е.., что

Докажем, что из 41.

Выберем любой замкнутый контур из области D, который ограничивает область D 1 .

Функции P и Q удовлетворяют условиям Остроградского-Грина:

В силу равенства (4) в левой части (9) интеграл равен 0, а это значит, что и правая часть равенства равна

Замечание 1. Теорема 1. может быть сформулировано в виде трёх самостоятельных теорем

Теорема 1*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (.1), т.е.

Теорема 2*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (3):

дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D.

Теорема 3*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (4):

Замечание 2. В теореме2* область D может быть и многосвязной.

(Остроградский Михаил Васильевич (1861–1862) – русский математик,

академик Петерб. А.Н.)

(Джордж Грин (1793 – 1841) – английский математик)

Иногда эту формулу называют формулой Грина, однако, Дж.

Грин предложил в 1828 году только частный случай формулы.

Формула Остроградского – Грина устанавливает связь между криволинейным интегралом и двойным интегралом, т.е. дает выражение интеграла по замкнутому контуру через двойной интеграл по области, ограниченной этим контуром.

Если замкнутый контур имеет вид, показанный на рисунке, то криволинейный интеграл по контуру L можно записать в виде:

Если участки АВ и CD контура принять за произвольные кривые, то, проведя аналогичные преобразования, получим формулу для контура произвольной формы:

Эта формула называется формулой Остроградского – Грина.

Формула Остроградского – Грина справедлива и в случае многосвязной области, т.е. области, внутри которой есть исключенные участки. В этом случае правая часть формулы будет представлять собой сумму интегралов по внешнему контуру области и интегралов по контурам всех исключенных участков, причем каждый из этих контуров интегрируется в таком направлении, чтобы область D все время оставалась по левую сторону линии обхода.

Пример. Решим пример, рассмотренный выше, воспользовавшись формулой Остроградского – Грина.

Формула Остроградского – Грина позволяет значительно упростить вычисление криволинейного интеграла.

Криволинейный интеграл не зависит от формы пути, если он вдоль всех путей, соединяющих начальную и конечную точку, имеет одну и ту же величину.

Условием независимости криволинейного интеграла от формы пути равносильно равенству нулю этого интеграла по любому замкнутому контуру, содержащему начальную и конечную точки.

Это условие будет выполняться, если подынтегральное выражение является полным дифференциалом некоторой функции, т.е. выполняется условие тотальности.

Эти формулы связывают интеграл по фигуре с некоторым интегралом по границе данной фигуры.

Пусть функции непрерывны в области D ÌOxy и на ее границе Г ; область D – связная; Г – кусочно-гладкая кривая. Тогда верна формула Грина :

здесь слева стоит криволинейный интеграл I рода, справа – двойной интеграл; контур Г обходится против часовой стрелки.

Пусть Т – кусочно-гладкая ограниченная двусторонняя поверхность с кусочно-гладкой границей Г . Если функции P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z ) и их частные производные I порядка непрерывны в точках поверхности Т и границы Г , то имеет место формула Стокса :

(2.23)

слева стоит криволинейный интеграл II рода; справа – поверхностный интеграл II рода, взятый по той стороне поверхности Т , которая остается слева при обходе кривой Г .

Если связная область W ÌOxyz ограничена кусочно-гладкой, замкнутой поверхностью Т , а функции P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z ) и их частные производные первого порядка непрерывны в точках из W и Т , то имеет место формула Остроградского-Гаусса :

(2.24)

слева – поверхностный интеграл II рода по внешней стороне поверхности Т ; справа – тройной интеграл по области W .

Пример 1. Вычислить работу силы при обходе точки ее приложения окружности Г : , начиная от оси Ox , по часовой стрелке (рис. 2.18).

Решение. Работа равна . Применим формулу Грина (2.22), ставя знак “-” справа перед интегралом (так как обход контура – по часовой стрелке) и учитывая, что P (x ,y )=x -y , Q (x ,y )=x +y . Имеем:
,
где S D – площадь круга D : , равная . В итоге: – искомая работа силы.

Пример 2. Вычислить интеграл , если Г есть окружность в плоскости z =2, обходимая против часовой стрелки.

Решение. По формуле Стокса (2.23) исходный интеграл сведем к поверхностному интегралу по кругу Т :
T :

Итак, учитывая, что , имеем:

Последний интеграл есть двойной интеграл по кругу D ÌOxy , на который проектировался круг Т ; D : . Перейдем к полярным координатам: x =r cosj, y =r sinj, jÎ, r Î. В итоге:
.

Пример 3. Найти поток П Т пирамиды W : (рис. 2.19) в направлении внешней нормали к поверхности.

Решение. Поток равен . Применяя формулу Остроградского-Гаусса (2.24), сводим задачу к вычислению тройного интеграла по фигуре W -пирамиде:

Пример 4. Найти поток П векторного поля через полную поверхность T пирамиды W : ; (рис. 2.20), в направлении внешней нормали к поверхности.

Решение. Применим формулу Остроградского-Гаусса (2.24) , где V – объем пирамиды. Сравним с решением непосредственного вычисления потока ( – грани пирамиды).

,
так как проекция граней на плоскость Oxy имеет нулевую площадь (рис. 2.21),

Связь между дв. Инт. По области Д и криволин. Инт. По области L устанавливают формулу Остроградского-Грина.

Пусть на плоскости OXY задана область Д огр. Кривой пересекающееся с прямыми параллельными корд. Осям не более чем в 2 точках, т. е. область Д правильная.

Т1.Если ф. P(x,y), Q(x,y) непрерывно вместе со своими чанными производными ,

Области Д то справедлива форм. (ф.Остр.-Гр.)

L граница области Д и интегрирование вдоль кривой L производится в положительном направлении.До- во.

Т2.Если = (2), то подинтегр. Выражение P*dx+Q*dy явл. Полным диф. Функции U=U(x,y).

P*dx+Q*dy =U(x.y)

Удовлетворяет условию (2) можно найти используя ф.

Зам.1 Чтобы не спутать переменную интегр. X с верхним преднлом ее обозн. Другой буквой.

Зам. 2 в качестве нач точки(x0,Y0) обычно берут точку (0.0)

Условие независимости криволинейного инт. 2-го рода от пути интегр.

Пусть т. А (X1, Y1), В(X2, Y2),. Пусть произв. точки области Д. Точки А и B можно соеденить различными линиями. По каждой из них кр. Инт. будет иметь свое значение если же значение по всем кривым одинаково, то интеграл не зависит, от вида пути инт., в этам сл достаточно отметить первонач. Точку А (X1, Y1) и конечную В(X2, Y2).

Т. Для того, чтобы кр. Инт.

Не зависит от пути инт. Области Д в кот. Ф. P(X,Y), Q(X,Y) непрерывны вместе со своими производными и необходимо, чтобы в каждой точке области = Док-во

Кр. Инт. 2-го рода не зависит отпути интегрирования

Зам. = отсюда получаем, что

Пов. Инт. 1-го рода.Его св. и выч.

Пусть в точках пов. S С ПЛ. S пространства oxyz опред. Непрерывная ф. f(x,y.z) .

Разобьем пов. S на n частей Si, ПЛ. КАЖДОЙ ЧАСТИ дельта Si, а диаметр Di i=1..m в каждой части Si выберем произвольную точку Mi от (xi, yi, zi) и cоставим сумму . Сумма называется интегральной для ф. f(x,y.z) по поверхности S если при интегр. Сумма имеет предел, то он наз. Пов интегралом 1-го рода от ф. f(x,y.z) по поверхности S и обозначается =

Свойства пов. Инт.

2) 3) S=s1+s2, Тогда 4) f1<=f2 , т о 5) 6) 7) Ф. f непрерывна на поверхности S , то на этой поверхности сущ. Точка M(x0,y0,z0) S, такая, что .

Выч пов инт 1-го рода сводиться к вычисленею2-го инт по обл Д, кот явл проекцией пов S на плоскость oxy, если пов s задана Ур z=z(x,y) то по винт равен .

Если S задано в виде y=y(x, z), то …

Пов инт 2-го рода

Пусть задана двусторонняя пов, после обхода такой пов не пересекая ее границы направление нормали к ней не меняется. Односторонныя пов: является Лист Мебиуса. Пусть в точке рассматриваемой двусторонней поверхности S в прстранстве oxyz определена ф. F(x,y,z). Выбронную сторону поверхности разбиваем на части Si i=1..m и проектируем их на корд плоскости. При этом пл пов ,берем со знаком «+», если выбрана верхняя сторона пов (если нормаль образует острый угол с oz, выб со зн «–» если выбрана нижняя сторона пов(ТУПОЙ УГОЛ)). Составим инт сумму Где – пл пов Si –части при если он сущ и не зависит от способа разбиения поверхности на части и от выбора точек в них, наз по инт 2-ого рода от ф. f(x,y,z) по пов s и обозначается: по опред пов интеграл будет = пределу интегр суммы. Аналогично опред инт по пов s



, тогда общим видоим пов инт 2-го рода служит инт где P, Q, R непрерывные функции опред в точках двусторонней пов s. Если S замкнутая пов, то по инт по внешней стороне обозначается и по внутренней стороне . ds. Где ds элемент площади пов S , а cos , cos cos напр cos нармали n. Выбранной стороны пов.

Ограниченному этой поверхностью:

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму T , равен потоку вектора через поверхность S , ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

В работе Остроградского формула записана в следующем виде:

где ω и s - дифференциалы объёма и поверхности соответственно. В современной записи ω = d Ω - элемент объёма, s = d S - элемент поверхности. - функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

История

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс ( , гг.) на примере задач электродинамики .

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году . С помощью данной формулы Остроградский нашёл выражение производной по параметру от n -кратного интеграла с переменными пределами и получил формулу для вариации n -кратного интеграла.

За рубежом формула называется формулой Гаусса или «формулой (теоремой) Гаусса-Остроградского».

См. также

Литература

  • Остроградский М. В. Note sur les integrales definies. // Mem. 1’Acad. (VI), 1, стр. 117-122, 29/Х 1828 (1831).
  • Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. 1’Acad., 1, стр. 35-58, 24/1 1834 (1838).

Примечания


Wikimedia Foundation . 2010 .

  • Остроградский
  • Её звали Никита (телесериал)

Смотреть что такое "Формула Остроградского" в других словарях:

    Остроградского формула

    Формула Гаусса-Остроградского - Теорема Остроградского Гаусса утверждение интегрального исчисления функций многих переменных, устанавливающее связь между n кратным интегралом по области и (n − 1) кратным интегралом по её границе. Пусть V = (v1,v2,...,vn) есть векторное поле… … Википедия

    Формула Стокса - Теорема Стокса одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса. Содержание 1 Общая формулировка 2… … Википедия

    Формула Грина - Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в … Википедия

    Формула Лиувилля-Остроградского - Формула Лиувилля Остроградского формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида y(n) + P1(x)y(n − 1) + P2(x)y(n − 2) … Википедия

    Формула Лиувилля - Остроградского формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида тогда где определитель Вронского Для линейной… … Википедия

    ОСТРОГРАДСКОГО ФОРМУЛА - формула интегрального исчисления функций многих переменных, устанавливающая связь между n кратным интегралом по области и (п 1) кратным интегралом но ее границе. Пусть функции Xi=Xi(x1,x2,..., х п).вместе со своими частными производными, i=1, 2 … Математическая энциклопедия

    ОСТРОГРАДСКОГО ФОРМУЛА - связывает тройной интеграл (см. Кратный интеграл) по некоторому объему с поверхностным интегралом по поверхности, ограничивающей этот объем. Предложена М. В. Остроградским (1828 31) … Большой Энциклопедический словарь

    Остроградского формула - формула, дающая преобразование интеграла, взятого по объёму Q, ограниченному поверхностью S, в интеграл, взятый по этой поверхности: здесь X, Y, Z функции точки (х, у, z), принадлежащей трёхмерной области Ω. О. ф. найдена … Большая советская энциклопедия